T. Ohara T. Sato N. Shimizu G. Prescher H. Schwind O. Weiberg K. Marten H. Greim Ullmann's Encyclopedia of Industrial Chemistry 2011
Beerthuis, R., Rothenberg, G., & Shiju, N. R. (2015). Catalytic routes towards acrylic acid, adipic acid and ε-caprolactam starting from biorenewables. Green Chemistry, 17(3), 1341-1361. doi:10.1039/c4gc02076f
Sattler, J. J. H. B., Ruiz-Martinez, J., Santillan-Jimenez, E., & Weckhuysen, B. M. (2014). Catalytic Dehydrogenation of Light Alkanes on Metals and Metal Oxides. Chemical Reviews, 114(20), 10613-10653. doi:10.1021/cr5002436
[+]
T. Ohara T. Sato N. Shimizu G. Prescher H. Schwind O. Weiberg K. Marten H. Greim Ullmann's Encyclopedia of Industrial Chemistry 2011
Beerthuis, R., Rothenberg, G., & Shiju, N. R. (2015). Catalytic routes towards acrylic acid, adipic acid and ε-caprolactam starting from biorenewables. Green Chemistry, 17(3), 1341-1361. doi:10.1039/c4gc02076f
Sattler, J. J. H. B., Ruiz-Martinez, J., Santillan-Jimenez, E., & Weckhuysen, B. M. (2014). Catalytic Dehydrogenation of Light Alkanes on Metals and Metal Oxides. Chemical Reviews, 114(20), 10613-10653. doi:10.1021/cr5002436
Lanzafame, P., Centi, G., & Perathoner, S. (2014). Evolving scenarios for biorefineries and the impact on catalysis. Catalysis Today, 234, 2-12. doi:10.1016/j.cattod.2014.03.022
Katryniok, B., Paul, S., & Dumeignil, F. (2013). Recent Developments in the Field of Catalytic Dehydration of Glycerol to Acrolein. ACS Catalysis, 3(8), 1819-1834. doi:10.1021/cs400354p
Zhang, J., Zhao, Y., Pan, M., Feng, X., Ji, W., & Au, C.-T. (2010). Efficient Acrylic Acid Production through Bio Lactic Acid Dehydration over NaY Zeolite Modified by Alkali Phosphates. ACS Catalysis, 1(1), 32-41. doi:10.1021/cs100047p
Chu, H. S., Ahn, J.-H., Yun, J., Choi, I. S., Nam, T.-W., & Cho, K. M. (2015). Direct fermentation route for the production of acrylic acid. Metabolic Engineering, 32, 23-29. doi:10.1016/j.ymben.2015.08.005
Sheldon, R. A. (2014). Green and sustainable manufacture of chemicals from biomass: state of the art. Green Chem., 16(3), 950-963. doi:10.1039/c3gc41935e
Zhou, C. H., Zhao, H., Tong, D. S., Wu, L. M., & Yu, W. H. (2013). Recent Advances in Catalytic Conversion of Glycerol. Catalysis Reviews, 55(4), 369-453. doi:10.1080/01614940.2013.816610
Talebian-Kiakalaieh, A., Amin, N. A. S., & Hezaveh, H. (2014). Glycerol for renewable acrolein production by catalytic dehydration. Renewable and Sustainable Energy Reviews, 40, 28-59. doi:10.1016/j.rser.2014.07.168
J. L. Dubois Arkema Fr. WO 2007090991 2007
J. L. Dubois Arkema Fr. WO 2008007002 2008
Wang, F., Xu, J., Dubois, J.-L., & Ueda, W. (2010). Catalytic Oxidative Dehydration of Glycerol over a Catalyst with Iron Oxide Domains Embedded in an Iron Orthovanadate Phase. ChemSusChem, 3(12), 1383-1389. doi:10.1002/cssc.201000245
Soriano, M. D., Concepción, P., Nieto, J. M. L., Cavani, F., Guidetti, S., & Trevisanut, C. (2011). Tungsten-Vanadium mixed oxides for the oxidehydration of glycerol into acrylic acid. Green Chemistry, 13(10), 2954. doi:10.1039/c1gc15622e
Deleplanque, J., Dubois, J.-L., Devaux, J.-F., & Ueda, W. (2010). Production of acrolein and acrylic acid through dehydration and oxydehydration of glycerol with mixed oxide catalysts. Catalysis Today, 157(1-4), 351-358. doi:10.1016/j.cattod.2010.04.012
Omata, K., Matsumoto, K., Murayama, T., & Ueda, W. (2016). Direct oxidative transformation of glycerol to acrylic acid over Nb-based complex metal oxide catalysts. Catalysis Today, 259, 205-212. doi:10.1016/j.cattod.2015.07.016
Chieregato, A., Soriano, M. D., Basile, F., Liosi, G., Zamora, S., Concepción, P., … López Nieto, J. M. (2014). One-pot glycerol oxidehydration to acrylic acid on multifunctional catalysts: Focus on the influence of the reaction parameters in respect to the catalytic performance. Applied Catalysis B: Environmental, 150-151, 37-46. doi:10.1016/j.apcatb.2013.11.045
Chieregato, A., Soriano, M. D., García-González, E., Puglia, G., Basile, F., Concepción, P., … Cavani, F. (2014). Multielement Crystalline and Pseudocrystalline Oxides as Efficient Catalysts for the Direct Transformation of Glycerol into Acrylic Acid. ChemSusChem, 8(2), 398-406. doi:10.1002/cssc.201402721
Chieregato, A., Basile, F., Concepción, P., Guidetti, S., Liosi, G., Soriano, M. D., … Nieto, J. M. L. (2012). Glycerol oxidehydration into acrolein and acrylic acid over W–V–Nb–O bronzes with hexagonal structure. Catalysis Today, 197(1), 58-65. doi:10.1016/j.cattod.2012.06.024
Possato, L. G., Cassinelli, W. H., Garetto, T., Pulcinelli, S. H., Santilli, C. V., & Martins, L. (2015). One-step glycerol oxidehydration to acrylic acid on multifunctional zeolite catalysts. Applied Catalysis A: General, 492, 243-251. doi:10.1016/j.apcata.2014.12.049
Pestana, C. F. M., Guerra, A. C. O., Ferreira, G. B., Turci, C. C., & Mota, C. J. A. (2013). Oxidative dehydration of glycerol to acrylic acid over vanadium-impregnated zeolite beta. Journal of the Brazilian Chemical Society, 24(1), 100-105. doi:10.1590/s0103-50532013000100014
Feng, X., Yao, Y., Su, Q., Zhao, L., Jiang, W., Ji, W., & Au, C.-T. (2015). Vanadium pyrophosphate oxides: The role of preparation chemistry in determining renewable acrolein production from glycerol dehydration. Applied Catalysis B: Environmental, 164, 31-39. doi:10.1016/j.apcatb.2014.08.049
Wang, F., Dubois, J.-L., & Ueda, W. (2009). Catalytic dehydration of glycerol over vanadium phosphate oxides in the presence of molecular oxygen. Journal of Catalysis, 268(2), 260-267. doi:10.1016/j.jcat.2009.09.024
Chieregato, A., López Nieto, J. M., & Cavani, F. (2015). Mixed-oxide catalysts with vanadium as the key element for gas-phase reactions. Coordination Chemistry Reviews, 301-302, 3-23. doi:10.1016/j.ccr.2014.12.003
Yun, Y. S., Lee, K. R., Park, H., Kim, T. Y., Yun, D., Han, J. W., & Yi, J. (2014). Rational Design of a Bifunctional Catalyst for the Oxydehydration of Glycerol: A Combined Theoretical and Experimental Study. ACS Catalysis, 5(1), 82-94. doi:10.1021/cs501307v
Pastore, H. O., Coluccia, S., & Marchese, L. (2005). POROUS ALUMINOPHOSPHATES :From Molecular Sieves to Designed Acid Catalysts. Annual Review of Materials Research, 35(1), 351-395. doi:10.1146/annurev.matsci.35.103103.120732
Dummer, N. F., Weng, W., Kiely, C., Carley, A. F., Bartley, J. K., Kiely, C. J., & Hutchings, G. J. (2010). Structural evolution and catalytic performance of DuPont V-P-O/SiO2 materials designed for fluidized bed applications. Applied Catalysis A: General, 376(1-2), 47-55. doi:10.1016/j.apcata.2009.10.004
Soriano, M. D., Chieregato, A., Zamora, S., Basile, F., Cavani, F., & López Nieto, J. M. (2015). Promoted Hexagonal Tungsten Bronzes as Selective Catalysts in the Aerobic Transformation of Alcohols: Glycerol and Methanol. Topics in Catalysis, 59(2-4), 178-185. doi:10.1007/s11244-015-0440-7
García-González, E., Soriano, M. D., Urones-Garrote, E., & López Nieto, J. M. (2014). On the origin of the spontaneous formation of nanocavities in hexagonal bronzes (W,V)O3. Dalton Trans., 43(39), 14644-14652. doi:10.1039/c4dt01465k
Concepción, P., Blasco, T., López Nieto, J. M., Vidal-Moya, A., & Martı́nez-Arias, A. (2004). Preparation, characterization and reactivity of V- and/or Co-containing AlPO-18 materials (VCoAPO-18) in the oxidative dehydrogenation of ethane. Microporous and Mesoporous Materials, 67(2-3), 215-227. doi:10.1016/j.micromeso.2003.11.005
Ross-Medgaarden, E. I., & Wachs, I. E. (2007). Structural Determination of Bulk and Surface Tungsten Oxides with UV−vis Diffuse Reflectance Spectroscopy and Raman Spectroscopy. The Journal of Physical Chemistry C, 111(41), 15089-15099. doi:10.1021/jp074219c
Wachs, I. E., Deo, G., Weckhuysen, B. M., Andreini, A., Vuurman, M. A., Boer, M. de, & Amiridis, M. D. (1996). Selective Catalytic Reduction of NO with NH3over Supported Vanadia Catalysts. Journal of Catalysis, 161(1), 211-221. doi:10.1006/jcat.1996.0179
Argyle, M. D., Chen, K., Bell, A. T., & Iglesia, E. (2002). Effect of Catalyst Structure on Oxidative Dehydrogenation of Ethane and Propane on Alumina-Supported Vanadia. Journal of Catalysis, 208(1), 139-149. doi:10.1006/jcat.2002.3570
Grant, J. T., Carrero, C. A., Love, A. M., Verel, R., & Hermans, I. (2015). Enhanced Two-Dimensional Dispersion of Group V Metal Oxides on Silica. ACS Catalysis, 5(10), 5787-5793. doi:10.1021/acscatal.5b01679
Cavani, F., Luciani, S., Esposti, E. D., Cortelli, C., & Leanza, R. (2010). Surface Dynamics of A Vanadyl Pyrophosphate Catalyst forn-Butane Oxidation to Maleic Anhydride: An In Situ Raman and Reactivity Study of the Effect of the P/V Atomic Ratio. Chemistry - A European Journal, 16(5), 1646-1655. doi:10.1002/chem.200902017
Cavani, F., De Santi, D., Luciani, S., Löfberg, A., Bordes-Richard, E., Cortelli, C., & Leanza, R. (2010). Transient reactivity of vanadyl pyrophosphate, the catalyst for n-butane oxidation to maleic anhydride, in response to in-situ treatments. Applied Catalysis A: General, 376(1-2), 66-75. doi:10.1016/j.apcata.2009.10.037
Caldarelli, A., Bañares, M. A., Cortelli, C., Luciani, S., & Cavani, F. (2014). An investigation on surface reactivity of Nb-doped vanadyl pyrophosphate catalysts by reactivity experiments and in situ Raman spectroscopy. Catal. Sci. Technol., 4(2), 419-427. doi:10.1039/c3cy00705g
Concepción, P., & López Nieto, J. . (2001). Novel synthesis of a vanadium–cobalt aluminophosphate molecular sieve of AEI structure (VCoAPO-18) and its catalytic behaviour for the ethane oxidation. Catalysis Communications, 2(11-12), 363-367. doi:10.1016/s1566-7367(01)00061-9
Lourenço, J. P., Macedo, M. I., & Fernandes, A. (2012). Sulfonic-functionalized SBA-15 as an active catalyst for the gas-phase dehydration of Glycerol. Catalysis Communications, 19, 105-109. doi:10.1016/j.catcom.2011.12.029
Massa, M., Andersson, A., Finocchio, E., & Busca, G. (2013). Gas-phase dehydration of glycerol to acrolein over Al2O3-, SiO2-, and TiO2-supported Nb- and W-oxide catalysts. Journal of Catalysis, 307, 170-184. doi:10.1016/j.jcat.2013.07.022
Massa, M., Andersson, A., Finocchio, E., Busca, G., Lenrick, F., & Wallenberg, L. R. (2013). Performance of ZrO 2 -supported Nb- and W-oxide in the gas-phase dehydration of glycerol to acrolein. Journal of Catalysis, 297, 93-109. doi:10.1016/j.jcat.2012.09.021
Zhang, H., Hu, Z., Huang, L., Zhang, H., Song, K., Wang, L., … Tang, Y. (2015). Dehydration of Glycerol to Acrolein over Hierarchical ZSM-5 Zeolites: Effects of Mesoporosity and Acidity. ACS Catalysis, 5(4), 2548-2558. doi:10.1021/cs5019953
Foo, G. S., Wei, D., Sholl, D. S., & Sievers, C. (2014). Role of Lewis and Brønsted Acid Sites in the Dehydration of Glycerol over Niobia. ACS Catalysis, 4(9), 3180-3192. doi:10.1021/cs5006376
Concepción, P., Corma, A., López Nieto, J. M., & Pérez-Pariente, J. (1996). Selective oxidation of hydrocarbons on V- and/or Co-containing aluminophosphate (MeAPO-5) using molecular oxygen. Applied Catalysis A: General, 143(1), 17-28. doi:10.1016/0926-860x(96)00068-3
KAMIYA, Y., NISHIYAMA, H., YASHIRO, M., SATSUMA, A., & HATTORI, T. (2003). The Role of Bronsted and Lewis Acid Sites of Vanadyl Pyrophosphate Measured by Dimethylpyridine-temperature Programmed Desorption in the Selective Oxidation of Butane. Journal of the Japan Petroleum Institute, 46(1), 62-68. doi:10.1627/jpi.46.62
Yoda, E., & Ootawa, A. (2009). Dehydration of glycerol on H-MFI zeolite investigated by FT-IR. Applied Catalysis A: General, 360(1), 66-70. doi:10.1016/j.apcata.2009.03.009
Tichý, J. (1997). Oxidation of acrolein to acrylic acid over vanadium-molybdenum oxide catalysts. Applied Catalysis A: General, 157(1-2), 363-385. doi:10.1016/s0926-860x(97)00025-2
Andrushkevich, T. V., & Popova, G. Y. (1991). Mechanism of heterogeneous oxidation of acrolein to acrylic acid. Russian Chemical Reviews, 60(9), 1023-1034. doi:10.1070/rc1991v060n09abeh001126
López Nieto, J. M., Concepción, P., Dejoz, A., Knözinger, H., Melo, F., & Vázquez, M. I. (2000). Selective Oxidation of n-Butane and Butenes over Vanadium-Containing Catalysts. Journal of Catalysis, 189(1), 147-157. doi:10.1006/jcat.1999.2689
Davydov, A. (2003). Molecular Spectroscopy of Oxide Catalyst Surfaces. doi:10.1002/0470867981
Shee, D., & Deo, G. (2009). Adsorption and ODH reaction of alkane on sol–gel synthesized TiO2–WO3 supported vanadium oxide catalysts: In situ DRIFT and structure–reactivity study. Journal of Molecular Catalysis A: Chemical, 308(1-2), 46-55. doi:10.1016/j.molcata.2009.03.032
Bhattacharyya, K., Varma, S., Tripathi, A. K., Bharadwaj, S. R., & Tyagi, A. K. (2009). Mechanistic Insight byin SituFTIR for the Gas Phase Photo-oxidation of Ethylene by V-Doped Titania and Nano Titania. The Journal of Physical Chemistry B, 113(17), 5917-5928. doi:10.1021/jp8103529
Centi, G., Cavani, F., & Trifirò, F. (2001). Selective Oxidation by Heterogeneous Catalysis. Fundamental and Applied Catalysis. doi:10.1007/978-1-4615-4175-2
Tichý, J., & Davydov, A. A. (1976). Interaction of acrolein with vanadium-molybdenum oxide catalyst surface. Collection of Czechoslovak Chemical Communications, 41(3), 834-838. doi:10.1135/cccc19760834
Blasco, T., & Nieto, J. M. L. (1997). Oxidative dyhydrogenation of short chain alkanes on supported vanadium oxide catalysts. Applied Catalysis A: General, 157(1-2), 117-142. doi:10.1016/s0926-860x(97)00029-x
Pavarelli, G., Velasquez Ochoa, J., Caldarelli, A., Puzzo, F., Cavani, F., & Dubois, J.-L. (2015). A New Process for Maleic Anhydride Synthesis from a Renewable Building Block: The Gas-Phase Oxidehydration of Bio-1-butanol. ChemSusChem, 8(13), 2250-2259. doi:10.1002/cssc.201500095
Centi, G., Cavani, F., & Trifirò, F. (2001). Control of the Surface Reactivity of Solid Catalysts. Fundamental and Applied Catalysis, 203-283. doi:10.1007/978-1-4615-4175-2_5
Griffith, C. S., & Luca, V. (2004). Ion-Exchange Properties of Microporous Tungstates. Chemistry of Materials, 16(24), 4992-4999. doi:10.1021/cm049335w
[-]