- -

Another beauty of analytical chemistry: chemical analysis of inorganic pigments of art and archaeological objects

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Another beauty of analytical chemistry: chemical analysis of inorganic pigments of art and archaeological objects

Show full item record

Domenech Carbo, MT.; Osete Cortina, L. (2016). Another beauty of analytical chemistry: chemical analysis of inorganic pigments of art and archaeological objects. ChemTexts. 2:1-50. doi:10.1007/s40828-016-0033-5

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/105636

Files in this item

Item Metadata

Title: Another beauty of analytical chemistry: chemical analysis of inorganic pigments of art and archaeological objects
Author:
UPV Unit: Universitat Politècnica de València. Departamento de Conservación y Restauración de Bienes Culturales - Departament de Conservació i Restauració de Béns Culturals
Issued date:
Abstract:
[EN] This lecture text shows what fascinating tasks analytical chemists face in Art Conservation and Archaeology, and it is hoped that students reading it will realize that passions for science, arts or history are by no ...[+]
Subjects: Pigmentos , Análisis químico , Obras de arte , Artists pigments , Archaeometry , Voltammetry of microparticles , Microscopy techniques , Spectroscopic techniques , Spot tests , Electron Microscopy Service of the UPV
Copyrigths: Reserva de todos los derechos
Source:
ChemTexts. (eissn: 2199-3793 )
DOI: 10.1007/s40828-016-0033-5
Publisher:
Springer-Verlag
Publisher version: https://doi.org/10.1007/s40828-016-0033-5
Type: Artículo

References

Wilks H (ed) (1987) Science for conservators: a conservation science teaching series. The Conservation Unit Museums and Galleries Commission, London

San Andrés Moya M, Viña Ferrer S (2004) Fundamentos de química y física para la conservación y restauración. Síntesis, Madrid

Doménech-Carbó MT (2013) Principios físico-químicos de los materiales integrantes de los bienes culturales, Universitat Politècnica de València [+]
Wilks H (ed) (1987) Science for conservators: a conservation science teaching series. The Conservation Unit Museums and Galleries Commission, London

San Andrés Moya M, Viña Ferrer S (2004) Fundamentos de química y física para la conservación y restauración. Síntesis, Madrid

Doménech-Carbó MT (2013) Principios físico-químicos de los materiales integrantes de los bienes culturales, Universitat Politècnica de València

Mills JS, White R (1987) The organic chemistry of museum objects. Butterworths, London, pp 141–159

Matteini M, Moles A (1991) La Quimica nel Restauro. I materiali dell’arte pittorica. Nardini, Firenze

Gomez MA (1998) La Restauración. Examen científico aplicado a la conservación de obras de arte. Cátedra, Madrid

Taft WS Jr, Mayer JW (2000) The science of paintings. Springer, New York

Allen RO (ed) (1989) Archaeological chemistry IV; Advances in chemistry. American Chemical Society, Washington, DC

Aitken MJ (1990) Science-based dating in archaeology. Longman Archaeology Series, New York

Ciliberto E, Spoto G (eds) (2000) Modern analytical methods in art and archaeology. Wiley, New York

Matteini M, Moles A (1986) Sciencia e Restauro. Metodi di Indagine, 2nd edn. Nardini, Firenze

Odegaard N, Carroll S, Zimmt W (2000) Material characterization tests for objects of art and archaeology. Archetype Publications, London

Derrick MR, Stulik DC, Landry MJ (1999) Infrared spectroscopy in conservation science. Getty Conservation Institute, Los Angeles

Doménech-Carbó A, Doménech-Carbó MT, Costa V (2009) Electrochemical methods in archaeometry, conservation and restoration. In: Scholz F (ed) Series: Monographs in electrochemistry. Springer, Berlin

Edwards HGM, Chalmers JM (eds) (2005) Raman spectroscopy in archaeology and art history. The Royal Society of Chemistry, Cambridge

Lahanier C (1991) Scientific methods applied to the study of art objects. Mikrochim Acta II:245–254

Bitossi G, Giorgi R, Salvadori BM, Dei L (2005) Spectroscopic techniques in cultural heritage conservation: a survey. Appl Spectrosc Rev 40:187–228

Odlyha M (2000) Special feature: preservation of cultural heritage. The application of thermal analysis and other advanced analytical techniques to cultural objects. Thermochim Acta 365

Feature Special (2003) Archaeometry. Meas Sci Technol 14:1487–1630

Aitken MJ (1961) Physics and archaeology. Interscience, New York

Olin JS (ed) (1982) Future directions in archaeometry. A round table. Smithsonian Institution Press, Washington, DC

Townsend JH (2006) What is conservation science? Macromol Symp 238:1–10

Nadolny J (2003) The first century of published scientific analyses of the materials of historical painting and polychromy, circa 1780–1880. Rev Conserv 4:39–51

Montero Ruiz I, Garcia Heras M, López-Romero E (2007) Arqueometría: cambios y tendencias actuales. Trabajos de Prehistoria 64:23–40

Fernandes Vieira G, Sias Coelho LJ (2011) Arqueometría: Mirada histórica de una ciencia en desarrollo. Revista CPC 13:107–133

Rees-Jones SG (1990) Early experiments in pigment analysis. Stud Conserv 35:93–101

Allen RO (1989) The role of the chemists in archaeological studies. In: Allen RO (ed) Archaeological chemistry IV. Advances in chemistry. American Chemical Society, Washington DC, pp 1–17

Plesters J (1956) Cross-sections and chemical analysis of paint samples. Stud Conserv 2:110–157 and references therein

Gilberg M (1987) Friedrich Rathgen: the father of modern archaeological conservation. J Am Inst Conserv 26:105–120

Olin JS, Salmon ME, Olin CH (1969) Investigations of historical objects utilizing spectroscopy and other optical methods. Appl Optics 8:29–39

Feller RL (1954) Dammar and mastic infrared analysis. Science 120:1069–1070

Hall ET (1963) Methods of analysis (physical and microchemical) applied to paintings and antiquities. In: Thomson G (ed) Recent advances in conservation. Butterworths, London, pp 29–32

Feigl F, Anger V (1972) Spot tests in inorganic analysis, 6th English edition, translated by Oesper RE. Elsevier, Amsterdam

Locke DC, Riley OH (1970) Chemical analysis of paint samples using the Weisz ring oven technique. Stud Conserv 15:94–101

Mairinger F, Schreiner M (1986) Analysis of supports, grounds and pigments. In: van Schoute R, Verougstracte-Marcq H (eds) PACT 13, Xth Anniversary Meeting of PACT Group. Louvain-la Neuve, pp 171–183 (and references therein)

Vandenabeele P, Edwards HGM (2005) Overview: Raman spectrometry of artefacts. In: Edwards HGM, Chalmers JM (eds) Raman spectroscopy in archaeology and art history. The Royal Society of Chemistry, Cambridge, pp 169–178

Tykot RH (2004) Scientific methods and applications to archaeological provenance studies. In: Proceedings of the International School of Physics “Enrico Fermi”. IOS Press, Amsterdam, pp 407–432

Doménech-Carbó A, Doménech-Carbó MT, Valle-Algarra FM, Domine ME, Osete-Cortina L (2013) On the dehydroindigo contribution to Maya Blue. J Mat Sci 48:7171–7183

Lovric M, Scholz F (1997) A model for the propagation of a redox reaction through microcrystals. J Solid State Electrochem 1:108–113

Fitzgerald AG, Storey BE, Fabian D (1993) Quantitative microbeam analysis. Scottish Universities Sumer School in Physics and Institute of Physics Publishing, Bristol

Doménech-Carbó A (2015) Dating: an analytical task. ChemTexts 1:5

Mairinger F, Schreiner M (1982) New methods of chemical analysis-a tool for the conservator. Science and Technology in the service of conservation, IIC, London, pp 5–13

Malissa H, Benedetti-Pichler AA (1958) Anorganische qualitative Mikroanalyse. Springer, New York

Tertian R, Claisse F (1982) Principles of quantitative X-ray fluorescence analysis. Heyden, London

Mantler M, Schreiner M (2000) X-ray fluorescence spectrometry in art and archaeology. X-Ray Spectrom 29:3–17

Scholz F (2015) Voltammetric techniques of analysis: the essentials. ChemTexts 1:17

Inzelt G (2014) Crossing the bridge between thermodynamics and electrochemistry. From the potential of the cell reaction to the electrode potential. ChemTexts 1:2

Milchev A (2016) Nucleation phenomena in electrochemical systems: thermodynamic concepts. ChemTexts 2:2

Milchev A (2016) Nucleation phenomena in electrochemical systems: kinetic models. ChemTexts 2:4

Seeber R, Zanardi C, Inzelt G (2015) Links between electrochemical thermodynamics and kinetics. ChemTexts 1:18

Feist M (2015) Thermal analysis: basics, applications, and benefit. ChemTexts 1:8

Stoiber RE, Morse SA (1994) Crystal identification with the polarizing microscope. Springer, Berlin

Goldstein JI, Newbury DE, Echlin P, Joy DC, Lyman CE, Echlin P, Lifshin E, Sawyer L, Michael JR (2003) Scanning electron microscopy and X-ray microanalysis. Plenum Press, New York

Doménech-Carbó A, Doménech-Carbó MT, Más-Barberá X (2007) Identification of lead pigments in nanosamples from ancient paintings and polychromed sculptures using voltammetry of nanoparticles/atomic force microscopy. Talanta 71:1569–1579

Reedy TJ, Reedy ChL (1988) Statistical analysis in art conservation research. The Getty Conservation Institute, Los Angeles

Eastaugh N, Walsh V, Chaplin T, Siddall R (2004) Pigment compendium, optical microscopy of historical pigments. Elsevier, Oxford

Feller RL, Bayard M (1986) Terminology and procedures used in the systematic examination of pigment particles with polarizing microscope. In: Feller RL (ed) Artists’ pigment. A handbook of their history and characteristics, vol 1. National Gallery of Art, Washington, pp 285–298

Feller RL (ed) (1986) Artists’ pigment. A handbook of their history and characteristics, vol 1. National Gallery of Art, Washington

Roy A (ed) (1993) Artists’ pigments. A handbook of their history and characteristics, vol 2. National Gallery of Art, Washington

FitzHugh EW (ed) (1997) Artists’ pigments. A handbook of their history and characteristics, vol 3. National Gallery of Art, Washington

Berrie BH (ed) (2007) Artists’ pigment. A handbook of their history and characteristics, vol 4. National Gallery of Art, Washington

Haynes WN (ed) (2015) CRC handbook for physics and chemistry, 96th edn. Taylor and Francis Group, UK

Fiedler I, Bayard MA (1986) Cadmium yellows, oranges and reds. In: Feller RL (ed) Artists’ pigment. A handbook of their history and characteristics, vol 1. National Gallery of Art, Washington, pp 65–108

Domenech-Carbó MT, de Agredos Vazquez, Pascual ML, Osete-Cortina L, Domenech A, Guasch-Ferré N, Manzanilla LR, Vidal C (2012) Characterization of Pre-hispanic cosmetics found in a burial of the ancient city of Teotihuacan (Mexico). J Archaeol Sci 39:1043–1062

Mühlethaler B, Thissen J (1993) Smalt. In: Roy A (ed) Artists’ pigments. A handbook of their history and characteristics, vol 2. National Gallery of Art, Washington, pp 113–130

Musumarra G, Fichera M (1998) Chemometrics and cultural heritage. Chemometr Intell Lab Syst 44:363–372

Hochleitner B, Schreiner M, Drakopoulos M, Snigireva I, Snigirev A (2005) Analysis of paint layers by light microscopy, scanning electron microscopy and synchrotron induced X-ray micro-diffraction. In: Van Grieken R, Janssens K (eds) Cultural heritage conservation and environment impact assessment by non-destructive testing and micro-analysis. AA Balkema Publishers, London, pp 171–182

Švarcová S, Kočí E, Bezdička P, Hradil D, Hradilová J (2010) Evaluation of laboratory powder X-ray micro-diffraction for applications in the fields of cultural heritage and forensic science. Anal Bioanal Chem 398:1061–1076

Van de Voorde L, Vekemans B, Verhaeven E, Tack P, DeWolf R, Garrevoet J, Vandenabeele P, Vincze L (2015) Analytical characterization of a new mobile X-ray fluorescence and X-ray diffraction instrument combined with a pigment identification case study. Spectrochim Acta B 110:14–19

Hochleitner B, Desnica V, Mantler M, Schreiner M (2003) Historical pigments: a collection analyzed with X-ray diffraction analysis and X-ray fluorescence analysis in order to create a database. Spectrochim Acta B 58:641–649

Middleton PS, Ospitali F, Di Lonardo F (2005) Case study: painters and decorators: Raman spectroscopic studies of five Romano-British villas and the Domus Coiedii at Suasa, Italy. In: Edwards HGM, Chalmers JM (eds) Raman spectroscopy in archaeology and art history. The Royal Society of Chemistry, Cambridge, pp 97–120

Helwig K (1993) Iron oxide pigments: natural and synthetic. In: Roy A (ed) Artists’ pigments. A handbook of their history and characteristics, vol 2. National Gallery of Art, Washington, pp 39–95

Silva CE, Silva LP, Edwards HGM, de Oliveira LFC (2006) Diffuse reflection FTIR spectral database of dyes and pigments. Anal Bioanal Chem 386:2183–2191

Hummel DO (ed) (1985) Atlas of polymer and plastic analysis, vol 1, Polymers, structures and spectra. Hanser VCH, Münich

http://www.irug.org (consulted: 1 Feb 2016)

http://www.ehu.es/udps/database/database.html (consulted: 1 Feb 2016)

Burgio L, Clark RJH (2001) Library of FT-Raman spectra of pigments, minerals, pigment media and varnishes, and supplement to existing library of Raman spectra of pigments with visible excitation. Spectrochim Acta A 57:1491–1521

http://www.chem.ucl.ac.uk/resources/raman/speclib.html (consulted: 1 Feb 2016)

Madariaga JM, Bersani D (2012) Special feature: Raman spectroscopy in art and archaeology. J Raman Spectrosc 43(11):1523–1844

http://minerals.gps.caltech.edu/ (consulted: 1 Feb 2016)

http://www.rruff.info (consulted: 1 Feb 2016)

Frost RL, Martens WN, Rintoul L, Mahmutagic E, Kloprogge JT (2002) J Raman Spectrosc 33:252–259

Smith D (2005) Overwiew: jewellery and precious stones. In: Edwards HGM, Chalmers JM (eds) Raman spectroscopy in archaeology and art history. The Royal Society of Chemistry, Cambridge, pp 335–378

Weiner S, Bar-Yosef O (1990) States of preservation of bones from prehistoric sites in the Near East: a survey. J Archaeol Sci 17:187–196

Chu V, Regev L, Weiner S, Boaretto E (2008) Differentiating between anthropogenic calcite in plaster, ash and natural calcite using infrared spectroscopy: implications in archaeology. J Archaeol Sci 35:905–911

Beniash E, Aizenberg J, Addadi L, Weiner S (1997) Amorphous calcium carbonate transforms into calcite during sea-urchin larval spicule growth. Proc R Soc Lond Ser B 264:461–465

Regev L, Poduska KM, Addadi L, Weiner S, Boaretto E (2010) Distinguishing between calcites formed by different mechanisms using infrared spectrometry: archaeological applications. J Archaeol Sci 37:3022–3029

Farmer C (ed) (1974) The infrared spectra of mineral, Monograph 4. Mineralogical Society, London

Madejová J, Kečkéš J, Pálková H, Komadel P (2002) Identification of components in smectite/kaolinite mixtures. Clay Miner 37:377–388

Šucha V, Środoń J, Clauer N, Elsass F, Eberl DD, Kraus I, Madejová J (2001) Weathering of smectite and illite–smectite under temperate climatic conditions. Clay Miner 36:403–419

Doménech-Carbó A, Doménech-Carbó MT, López-López F, Valle-Algarra FM, Osete-Cortina L, Arcos-Von Haartman E (2013) Electrochemical characterization of egyptian blue pigment in wall paintings using the voltammetry of microparticles methodology. Electroanalysis 25:2621–2630

Doménech-Carbó MT, Edwards HGM, Doménech-Carbó A, del Hoyo-Meléndez JM, de la Cruz-Cañizares J (2012) An authentication case study: Antonio Palomino vs. Vicente Guillo paintings in the vaulted ceiling of the Sant Joan del Mercat church (Valencia, Spain). J Raman Spectrosc 43:1250–1259

Lovric M, Scholz F (1999) A model for the coupled transport of ions and electrons in redox conductive microcrystals. J Solid State Electrochem 3:172–175

Oldham KB (1998) Voltammetry at a three phase junction. J Solid State Electrochem 2:367–377

Doménech A, Doménech-Carbó MT, Gimeno-Adelantado JV, Bosch-Reig F, Saurí-Peris MC, Sánchez-Ramos S (2001) Electrochemical identification of iron oxide pigments (earths) from pictorial microsamples attached to graphite/polyester composite electrodes. Analyst 126:1764–1772

Doménech A, Doménech-Carbó MT, Moya-Moreno MCM, Gimeno-Adelantado JV, Bosch-Reig F (2000) Identification of inorganic pigments from paintings and polychromed sculptures immobilized into polymer film electrodes by stripping differential pulse voltammetry. Anal Chim Acta 407:275–289

Doménech-Carbó A, Doménech-Carbó MT, Valle-Algarra FM, Gimeno-Adelantado JV, Osete-Cortina L, Bosch-Reig F (2016) On-line database of voltammetric data of immobilized particles for identifying pigments and minerals in archaeometry, conservation and restoration (ELCHER database). Anal Chim Acta 927:1–12

http://www.elcher.info (consulted: 1 July 2016)

Scholz F, Doménech-Carbó A (2010) Special feature: electrochemistry for conservation science. J Solid State Electrochem 14

Domenech-Carbó A, Domenech-Carbó MT, Edwards HGM (2007) Identification of earth pigment by hierarchical cluster applied to solid state voltammetry. Application to a severely damaged frescoes. Electroanalysis 19:1890–1900

Domenech-Carbó A, Domenech-Carbó MT, Vázquez de Agredos-Pascual ML (2006) Dehydroindigo: a new piece into the Maya Blue puzzle from the voltammetry of microparticles approach. J Phys Chem B 110:6027–6039

Doménech-Carbó A, Doménech-Carbó MT, Vázquez de Agredos-Pascual ML (2007) Chemometric study of Maya Blue from the voltammetry of microparticles approach. Anal Chem 79:2812–2821

Doménech-Carbó A, Doménech-Carbó MT, Vázquez de Agredos-Pascual ML (2011) From Maya Blue to ‘Maya Yellow’: a connection between ancient nanostructured materials from the voltammetry of microparticles. Angew Chem Int Edit 50:5741–5744

Doménech-Carbó A, Doménech-Carbó MT, Vidal-Lorenzo C, Vázquez de Agredos-Pascual ML (2012) Insights into the Maya Blue Technology: greenish pellets from the ancient city of La Blanca. Angew Chem Int Ed 51:700–703

Doménech-Carbó A, Doménech-Carbó MT, Osete-Cortina L, Montoya N (2012) Application of solid-state electrochemistry techniques to polyfunctional organic-inorganic hybrid materials: the Maya Blue problem. Micropor Mesopor Mater 166:123–130

Doménech-Carbó MT, Osete-Cortina L, Doménech-Carbó A, Vázquez de Agredos-Pascual ML, Vidal-Lorenzo C (2014) Identification of indigoid compounds present in archaeological Maya blue by pyrolysis-silylation-gas chromatography–mass spectrometry. J Anal Appl Pyrol 105:355–362

[-]

This item appears in the following Collection(s)

Show full item record