Wilks H (ed) (1987) Science for conservators: a conservation science teaching series. The Conservation Unit Museums and Galleries Commission, London
San Andrés Moya M, Viña Ferrer S (2004) Fundamentos de química y física para la conservación y restauración. Síntesis, Madrid
Doménech-Carbó MT (2013) Principios físico-químicos de los materiales integrantes de los bienes culturales, Universitat Politècnica de València
[+]
Wilks H (ed) (1987) Science for conservators: a conservation science teaching series. The Conservation Unit Museums and Galleries Commission, London
San Andrés Moya M, Viña Ferrer S (2004) Fundamentos de química y física para la conservación y restauración. Síntesis, Madrid
Doménech-Carbó MT (2013) Principios físico-químicos de los materiales integrantes de los bienes culturales, Universitat Politècnica de València
Mills JS, White R (1987) The organic chemistry of museum objects. Butterworths, London, pp 141–159
Matteini M, Moles A (1991) La Quimica nel Restauro. I materiali dell’arte pittorica. Nardini, Firenze
Gomez MA (1998) La Restauración. Examen científico aplicado a la conservación de obras de arte. Cátedra, Madrid
Taft WS Jr, Mayer JW (2000) The science of paintings. Springer, New York
Allen RO (ed) (1989) Archaeological chemistry IV; Advances in chemistry. American Chemical Society, Washington, DC
Aitken MJ (1990) Science-based dating in archaeology. Longman Archaeology Series, New York
Ciliberto E, Spoto G (eds) (2000) Modern analytical methods in art and archaeology. Wiley, New York
Matteini M, Moles A (1986) Sciencia e Restauro. Metodi di Indagine, 2nd edn. Nardini, Firenze
Odegaard N, Carroll S, Zimmt W (2000) Material characterization tests for objects of art and archaeology. Archetype Publications, London
Derrick MR, Stulik DC, Landry MJ (1999) Infrared spectroscopy in conservation science. Getty Conservation Institute, Los Angeles
Doménech-Carbó A, Doménech-Carbó MT, Costa V (2009) Electrochemical methods in archaeometry, conservation and restoration. In: Scholz F (ed) Series: Monographs in electrochemistry. Springer, Berlin
Edwards HGM, Chalmers JM (eds) (2005) Raman spectroscopy in archaeology and art history. The Royal Society of Chemistry, Cambridge
Lahanier C (1991) Scientific methods applied to the study of art objects. Mikrochim Acta II:245–254
Bitossi G, Giorgi R, Salvadori BM, Dei L (2005) Spectroscopic techniques in cultural heritage conservation: a survey. Appl Spectrosc Rev 40:187–228
Odlyha M (2000) Special feature: preservation of cultural heritage. The application of thermal analysis and other advanced analytical techniques to cultural objects. Thermochim Acta 365
Feature Special (2003) Archaeometry. Meas Sci Technol 14:1487–1630
Aitken MJ (1961) Physics and archaeology. Interscience, New York
Olin JS (ed) (1982) Future directions in archaeometry. A round table. Smithsonian Institution Press, Washington, DC
Townsend JH (2006) What is conservation science? Macromol Symp 238:1–10
Nadolny J (2003) The first century of published scientific analyses of the materials of historical painting and polychromy, circa 1780–1880. Rev Conserv 4:39–51
Montero Ruiz I, Garcia Heras M, López-Romero E (2007) Arqueometría: cambios y tendencias actuales. Trabajos de Prehistoria 64:23–40
Fernandes Vieira G, Sias Coelho LJ (2011) Arqueometría: Mirada histórica de una ciencia en desarrollo. Revista CPC 13:107–133
Rees-Jones SG (1990) Early experiments in pigment analysis. Stud Conserv 35:93–101
Allen RO (1989) The role of the chemists in archaeological studies. In: Allen RO (ed) Archaeological chemistry IV. Advances in chemistry. American Chemical Society, Washington DC, pp 1–17
Plesters J (1956) Cross-sections and chemical analysis of paint samples. Stud Conserv 2:110–157 and references therein
Gilberg M (1987) Friedrich Rathgen: the father of modern archaeological conservation. J Am Inst Conserv 26:105–120
Olin JS, Salmon ME, Olin CH (1969) Investigations of historical objects utilizing spectroscopy and other optical methods. Appl Optics 8:29–39
Feller RL (1954) Dammar and mastic infrared analysis. Science 120:1069–1070
Hall ET (1963) Methods of analysis (physical and microchemical) applied to paintings and antiquities. In: Thomson G (ed) Recent advances in conservation. Butterworths, London, pp 29–32
Feigl F, Anger V (1972) Spot tests in inorganic analysis, 6th English edition, translated by Oesper RE. Elsevier, Amsterdam
Locke DC, Riley OH (1970) Chemical analysis of paint samples using the Weisz ring oven technique. Stud Conserv 15:94–101
Mairinger F, Schreiner M (1986) Analysis of supports, grounds and pigments. In: van Schoute R, Verougstracte-Marcq H (eds) PACT 13, Xth Anniversary Meeting of PACT Group. Louvain-la Neuve, pp 171–183 (and references therein)
Vandenabeele P, Edwards HGM (2005) Overview: Raman spectrometry of artefacts. In: Edwards HGM, Chalmers JM (eds) Raman spectroscopy in archaeology and art history. The Royal Society of Chemistry, Cambridge, pp 169–178
Tykot RH (2004) Scientific methods and applications to archaeological provenance studies. In: Proceedings of the International School of Physics “Enrico Fermi”. IOS Press, Amsterdam, pp 407–432
Doménech-Carbó A, Doménech-Carbó MT, Valle-Algarra FM, Domine ME, Osete-Cortina L (2013) On the dehydroindigo contribution to Maya Blue. J Mat Sci 48:7171–7183
Lovric M, Scholz F (1997) A model for the propagation of a redox reaction through microcrystals. J Solid State Electrochem 1:108–113
Fitzgerald AG, Storey BE, Fabian D (1993) Quantitative microbeam analysis. Scottish Universities Sumer School in Physics and Institute of Physics Publishing, Bristol
Doménech-Carbó A (2015) Dating: an analytical task. ChemTexts 1:5
Mairinger F, Schreiner M (1982) New methods of chemical analysis-a tool for the conservator. Science and Technology in the service of conservation, IIC, London, pp 5–13
Malissa H, Benedetti-Pichler AA (1958) Anorganische qualitative Mikroanalyse. Springer, New York
Tertian R, Claisse F (1982) Principles of quantitative X-ray fluorescence analysis. Heyden, London
Mantler M, Schreiner M (2000) X-ray fluorescence spectrometry in art and archaeology. X-Ray Spectrom 29:3–17
Scholz F (2015) Voltammetric techniques of analysis: the essentials. ChemTexts 1:17
Inzelt G (2014) Crossing the bridge between thermodynamics and electrochemistry. From the potential of the cell reaction to the electrode potential. ChemTexts 1:2
Milchev A (2016) Nucleation phenomena in electrochemical systems: thermodynamic concepts. ChemTexts 2:2
Milchev A (2016) Nucleation phenomena in electrochemical systems: kinetic models. ChemTexts 2:4
Seeber R, Zanardi C, Inzelt G (2015) Links between electrochemical thermodynamics and kinetics. ChemTexts 1:18
Feist M (2015) Thermal analysis: basics, applications, and benefit. ChemTexts 1:8
Stoiber RE, Morse SA (1994) Crystal identification with the polarizing microscope. Springer, Berlin
Goldstein JI, Newbury DE, Echlin P, Joy DC, Lyman CE, Echlin P, Lifshin E, Sawyer L, Michael JR (2003) Scanning electron microscopy and X-ray microanalysis. Plenum Press, New York
Doménech-Carbó A, Doménech-Carbó MT, Más-Barberá X (2007) Identification of lead pigments in nanosamples from ancient paintings and polychromed sculptures using voltammetry of nanoparticles/atomic force microscopy. Talanta 71:1569–1579
Reedy TJ, Reedy ChL (1988) Statistical analysis in art conservation research. The Getty Conservation Institute, Los Angeles
Eastaugh N, Walsh V, Chaplin T, Siddall R (2004) Pigment compendium, optical microscopy of historical pigments. Elsevier, Oxford
Feller RL, Bayard M (1986) Terminology and procedures used in the systematic examination of pigment particles with polarizing microscope. In: Feller RL (ed) Artists’ pigment. A handbook of their history and characteristics, vol 1. National Gallery of Art, Washington, pp 285–298
Feller RL (ed) (1986) Artists’ pigment. A handbook of their history and characteristics, vol 1. National Gallery of Art, Washington
Roy A (ed) (1993) Artists’ pigments. A handbook of their history and characteristics, vol 2. National Gallery of Art, Washington
FitzHugh EW (ed) (1997) Artists’ pigments. A handbook of their history and characteristics, vol 3. National Gallery of Art, Washington
Berrie BH (ed) (2007) Artists’ pigment. A handbook of their history and characteristics, vol 4. National Gallery of Art, Washington
Haynes WN (ed) (2015) CRC handbook for physics and chemistry, 96th edn. Taylor and Francis Group, UK
Fiedler I, Bayard MA (1986) Cadmium yellows, oranges and reds. In: Feller RL (ed) Artists’ pigment. A handbook of their history and characteristics, vol 1. National Gallery of Art, Washington, pp 65–108
Domenech-Carbó MT, de Agredos Vazquez, Pascual ML, Osete-Cortina L, Domenech A, Guasch-Ferré N, Manzanilla LR, Vidal C (2012) Characterization of Pre-hispanic cosmetics found in a burial of the ancient city of Teotihuacan (Mexico). J Archaeol Sci 39:1043–1062
Mühlethaler B, Thissen J (1993) Smalt. In: Roy A (ed) Artists’ pigments. A handbook of their history and characteristics, vol 2. National Gallery of Art, Washington, pp 113–130
Musumarra G, Fichera M (1998) Chemometrics and cultural heritage. Chemometr Intell Lab Syst 44:363–372
Hochleitner B, Schreiner M, Drakopoulos M, Snigireva I, Snigirev A (2005) Analysis of paint layers by light microscopy, scanning electron microscopy and synchrotron induced X-ray micro-diffraction. In: Van Grieken R, Janssens K (eds) Cultural heritage conservation and environment impact assessment by non-destructive testing and micro-analysis. AA Balkema Publishers, London, pp 171–182
Švarcová S, Kočí E, Bezdička P, Hradil D, Hradilová J (2010) Evaluation of laboratory powder X-ray micro-diffraction for applications in the fields of cultural heritage and forensic science. Anal Bioanal Chem 398:1061–1076
Van de Voorde L, Vekemans B, Verhaeven E, Tack P, DeWolf R, Garrevoet J, Vandenabeele P, Vincze L (2015) Analytical characterization of a new mobile X-ray fluorescence and X-ray diffraction instrument combined with a pigment identification case study. Spectrochim Acta B 110:14–19
Hochleitner B, Desnica V, Mantler M, Schreiner M (2003) Historical pigments: a collection analyzed with X-ray diffraction analysis and X-ray fluorescence analysis in order to create a database. Spectrochim Acta B 58:641–649
Middleton PS, Ospitali F, Di Lonardo F (2005) Case study: painters and decorators: Raman spectroscopic studies of five Romano-British villas and the Domus Coiedii at Suasa, Italy. In: Edwards HGM, Chalmers JM (eds) Raman spectroscopy in archaeology and art history. The Royal Society of Chemistry, Cambridge, pp 97–120
Helwig K (1993) Iron oxide pigments: natural and synthetic. In: Roy A (ed) Artists’ pigments. A handbook of their history and characteristics, vol 2. National Gallery of Art, Washington, pp 39–95
Silva CE, Silva LP, Edwards HGM, de Oliveira LFC (2006) Diffuse reflection FTIR spectral database of dyes and pigments. Anal Bioanal Chem 386:2183–2191
Hummel DO (ed) (1985) Atlas of polymer and plastic analysis, vol 1, Polymers, structures and spectra. Hanser VCH, Münich
http://www.irug.org (consulted: 1 Feb 2016)
http://www.ehu.es/udps/database/database.html (consulted: 1 Feb 2016)
Burgio L, Clark RJH (2001) Library of FT-Raman spectra of pigments, minerals, pigment media and varnishes, and supplement to existing library of Raman spectra of pigments with visible excitation. Spectrochim Acta A 57:1491–1521
http://www.chem.ucl.ac.uk/resources/raman/speclib.html (consulted: 1 Feb 2016)
Madariaga JM, Bersani D (2012) Special feature: Raman spectroscopy in art and archaeology. J Raman Spectrosc 43(11):1523–1844
http://minerals.gps.caltech.edu/ (consulted: 1 Feb 2016)
http://www.rruff.info (consulted: 1 Feb 2016)
Frost RL, Martens WN, Rintoul L, Mahmutagic E, Kloprogge JT (2002) J Raman Spectrosc 33:252–259
Smith D (2005) Overwiew: jewellery and precious stones. In: Edwards HGM, Chalmers JM (eds) Raman spectroscopy in archaeology and art history. The Royal Society of Chemistry, Cambridge, pp 335–378
Weiner S, Bar-Yosef O (1990) States of preservation of bones from prehistoric sites in the Near East: a survey. J Archaeol Sci 17:187–196
Chu V, Regev L, Weiner S, Boaretto E (2008) Differentiating between anthropogenic calcite in plaster, ash and natural calcite using infrared spectroscopy: implications in archaeology. J Archaeol Sci 35:905–911
Beniash E, Aizenberg J, Addadi L, Weiner S (1997) Amorphous calcium carbonate transforms into calcite during sea-urchin larval spicule growth. Proc R Soc Lond Ser B 264:461–465
Regev L, Poduska KM, Addadi L, Weiner S, Boaretto E (2010) Distinguishing between calcites formed by different mechanisms using infrared spectrometry: archaeological applications. J Archaeol Sci 37:3022–3029
Farmer C (ed) (1974) The infrared spectra of mineral, Monograph 4. Mineralogical Society, London
Madejová J, Kečkéš J, Pálková H, Komadel P (2002) Identification of components in smectite/kaolinite mixtures. Clay Miner 37:377–388
Šucha V, Środoń J, Clauer N, Elsass F, Eberl DD, Kraus I, Madejová J (2001) Weathering of smectite and illite–smectite under temperate climatic conditions. Clay Miner 36:403–419
Doménech-Carbó A, Doménech-Carbó MT, López-López F, Valle-Algarra FM, Osete-Cortina L, Arcos-Von Haartman E (2013) Electrochemical characterization of egyptian blue pigment in wall paintings using the voltammetry of microparticles methodology. Electroanalysis 25:2621–2630
Doménech-Carbó MT, Edwards HGM, Doménech-Carbó A, del Hoyo-Meléndez JM, de la Cruz-Cañizares J (2012) An authentication case study: Antonio Palomino vs. Vicente Guillo paintings in the vaulted ceiling of the Sant Joan del Mercat church (Valencia, Spain). J Raman Spectrosc 43:1250–1259
Lovric M, Scholz F (1999) A model for the coupled transport of ions and electrons in redox conductive microcrystals. J Solid State Electrochem 3:172–175
Oldham KB (1998) Voltammetry at a three phase junction. J Solid State Electrochem 2:367–377
Doménech A, Doménech-Carbó MT, Gimeno-Adelantado JV, Bosch-Reig F, Saurí-Peris MC, Sánchez-Ramos S (2001) Electrochemical identification of iron oxide pigments (earths) from pictorial microsamples attached to graphite/polyester composite electrodes. Analyst 126:1764–1772
Doménech A, Doménech-Carbó MT, Moya-Moreno MCM, Gimeno-Adelantado JV, Bosch-Reig F (2000) Identification of inorganic pigments from paintings and polychromed sculptures immobilized into polymer film electrodes by stripping differential pulse voltammetry. Anal Chim Acta 407:275–289
Doménech-Carbó A, Doménech-Carbó MT, Valle-Algarra FM, Gimeno-Adelantado JV, Osete-Cortina L, Bosch-Reig F (2016) On-line database of voltammetric data of immobilized particles for identifying pigments and minerals in archaeometry, conservation and restoration (ELCHER database). Anal Chim Acta 927:1–12
http://www.elcher.info (consulted: 1 July 2016)
Scholz F, Doménech-Carbó A (2010) Special feature: electrochemistry for conservation science. J Solid State Electrochem 14
Domenech-Carbó A, Domenech-Carbó MT, Edwards HGM (2007) Identification of earth pigment by hierarchical cluster applied to solid state voltammetry. Application to a severely damaged frescoes. Electroanalysis 19:1890–1900
Domenech-Carbó A, Domenech-Carbó MT, Vázquez de Agredos-Pascual ML (2006) Dehydroindigo: a new piece into the Maya Blue puzzle from the voltammetry of microparticles approach. J Phys Chem B 110:6027–6039
Doménech-Carbó A, Doménech-Carbó MT, Vázquez de Agredos-Pascual ML (2007) Chemometric study of Maya Blue from the voltammetry of microparticles approach. Anal Chem 79:2812–2821
Doménech-Carbó A, Doménech-Carbó MT, Vázquez de Agredos-Pascual ML (2011) From Maya Blue to ‘Maya Yellow’: a connection between ancient nanostructured materials from the voltammetry of microparticles. Angew Chem Int Edit 50:5741–5744
Doménech-Carbó A, Doménech-Carbó MT, Vidal-Lorenzo C, Vázquez de Agredos-Pascual ML (2012) Insights into the Maya Blue Technology: greenish pellets from the ancient city of La Blanca. Angew Chem Int Ed 51:700–703
Doménech-Carbó A, Doménech-Carbó MT, Osete-Cortina L, Montoya N (2012) Application of solid-state electrochemistry techniques to polyfunctional organic-inorganic hybrid materials: the Maya Blue problem. Micropor Mesopor Mater 166:123–130
Doménech-Carbó MT, Osete-Cortina L, Doménech-Carbó A, Vázquez de Agredos-Pascual ML, Vidal-Lorenzo C (2014) Identification of indigoid compounds present in archaeological Maya blue by pyrolysis-silylation-gas chromatography–mass spectrometry. J Anal Appl Pyrol 105:355–362
[-]