- -

Another beauty of analytical chemistry: chemical analysis of inorganic pigments of art and archaeological objects

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Another beauty of analytical chemistry: chemical analysis of inorganic pigments of art and archaeological objects

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Domenech Carbo, Mª Teresa es_ES
dc.contributor.author Osete Cortina, Laura es_ES
dc.date.accessioned 2018-07-11T08:32:21Z
dc.date.available 2018-07-11T08:32:21Z
dc.date.issued 2016 es_ES
dc.identifier.uri http://hdl.handle.net/10251/105636
dc.description.abstract [EN] This lecture text shows what fascinating tasks analytical chemists face in Art Conservation and Archaeology, and it is hoped that students reading it will realize that passions for science, arts or history are by no means mutually exclusive. This study describes the main analytical techniques used since the eighteenth century, and in particular, the instrumental techniques developed throughout the last century for analyzing pigments and inorganic materials, in general, which are found in cultural artefacts, such as artworks and archaeological remains. The lecture starts with a historical review on the use of analytical methods for the analysis of pigments from archaeological and art objects. Three different periods can be distinguished in the history of the application of the Analytical Chemistry in Archaeometrical and Art Conservation studies: (a) the "Formation'' period (eighteenth century1930), (b) the "Maturing'' period (1930-1970), and (c) the "Expansion'' period (1970-nowadays). A classification of analytical methods specifically established in the fields of Archaeometry and Conservation Science is also provided. After this, some sections are devoted to the description of a number of analytical techniques, which are most commonly used in routine analysis of pigments from cultural heritage. Each instrumental section gives the fundamentals of the instrumental technique, together with relevant analytical data and examples of applications. es_ES
dc.description.sponsorship Financial support is gratefully acknowledged from Spanish ‘‘I+D+I MINECO’’ projects CTQ2011-28079-CO3-01 and CTQ2014-53736-C3-1-P supported by ERDEF funds. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof ChemTexts es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Pigmentos es_ES
dc.subject Análisis químico es_ES
dc.subject Obras de arte es_ES
dc.subject Artists pigments es_ES
dc.subject Archaeometry es_ES
dc.subject Voltammetry of microparticles es_ES
dc.subject Microscopy techniques es_ES
dc.subject Spectroscopic techniques es_ES
dc.subject Spot tests es_ES
dc.subject Electron Microscopy Service of the UPV
dc.subject.classification PINTURA es_ES
dc.title Another beauty of analytical chemistry: chemical analysis of inorganic pigments of art and archaeological objects es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s40828-016-0033-5 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2014-53736-C3-1-P/ES/APLICACION DE LAS TECNICAS NANOELECTROQUIMICAS Y BIOTECNOLOGIAS EN EL ESTUDIO Y CONSERVACION DEL PATRIMONIO EN METAL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CTQ2011-28079-C03-01/ES/DESARROLLO DE METODOS NANOELECTROQUIMICOS DE ANALISIS DE OBRA PICTORICA BASADOS EN LA TECNICA DE MICROSCOPIA DE FUERZA ATOMICA-VOLTAMETRIA DE NANOPARTICULAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Conservación y Restauración de Bienes Culturales - Departament de Conservació i Restauració de Béns Culturals es_ES
dc.description.bibliographicCitation Domenech Carbo, MT.; Osete Cortina, L. (2016). Another beauty of analytical chemistry: chemical analysis of inorganic pigments of art and archaeological objects. ChemTexts. 2:1-50. https://doi.org/10.1007/s40828-016-0033-5 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s40828-016-0033-5 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 50 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2 es_ES
dc.identifier.eissn 2199-3793 es_ES
dc.subject.asignatura Análisis físico químico del patrimonio 34957 / X - Máster universitario en conservación y restauración de bienes culturales 2292 es_ES
dc.relation.pasarela S\327112 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Wilks H (ed) (1987) Science for conservators: a conservation science teaching series. The Conservation Unit Museums and Galleries Commission, London es_ES
dc.description.references San Andrés Moya M, Viña Ferrer S (2004) Fundamentos de química y física para la conservación y restauración. Síntesis, Madrid es_ES
dc.description.references Doménech-Carbó MT (2013) Principios físico-químicos de los materiales integrantes de los bienes culturales, Universitat Politècnica de València es_ES
dc.description.references Mills JS, White R (1987) The organic chemistry of museum objects. Butterworths, London, pp 141–159 es_ES
dc.description.references Matteini M, Moles A (1991) La Quimica nel Restauro. I materiali dell’arte pittorica. Nardini, Firenze es_ES
dc.description.references Gomez MA (1998) La Restauración. Examen científico aplicado a la conservación de obras de arte. Cátedra, Madrid es_ES
dc.description.references Taft WS Jr, Mayer JW (2000) The science of paintings. Springer, New York es_ES
dc.description.references Allen RO (ed) (1989) Archaeological chemistry IV; Advances in chemistry. American Chemical Society, Washington, DC es_ES
dc.description.references Aitken MJ (1990) Science-based dating in archaeology. Longman Archaeology Series, New York es_ES
dc.description.references Ciliberto E, Spoto G (eds) (2000) Modern analytical methods in art and archaeology. Wiley, New York es_ES
dc.description.references Matteini M, Moles A (1986) Sciencia e Restauro. Metodi di Indagine, 2nd edn. Nardini, Firenze es_ES
dc.description.references Odegaard N, Carroll S, Zimmt W (2000) Material characterization tests for objects of art and archaeology. Archetype Publications, London es_ES
dc.description.references Derrick MR, Stulik DC, Landry MJ (1999) Infrared spectroscopy in conservation science. Getty Conservation Institute, Los Angeles es_ES
dc.description.references Doménech-Carbó A, Doménech-Carbó MT, Costa V (2009) Electrochemical methods in archaeometry, conservation and restoration. In: Scholz F (ed) Series: Monographs in electrochemistry. Springer, Berlin es_ES
dc.description.references Edwards HGM, Chalmers JM (eds) (2005) Raman spectroscopy in archaeology and art history. The Royal Society of Chemistry, Cambridge es_ES
dc.description.references Lahanier C (1991) Scientific methods applied to the study of art objects. Mikrochim Acta II:245–254 es_ES
dc.description.references Bitossi G, Giorgi R, Salvadori BM, Dei L (2005) Spectroscopic techniques in cultural heritage conservation: a survey. Appl Spectrosc Rev 40:187–228 es_ES
dc.description.references Odlyha M (2000) Special feature: preservation of cultural heritage. The application of thermal analysis and other advanced analytical techniques to cultural objects. Thermochim Acta 365 es_ES
dc.description.references Feature Special (2003) Archaeometry. Meas Sci Technol 14:1487–1630 es_ES
dc.description.references Aitken MJ (1961) Physics and archaeology. Interscience, New York es_ES
dc.description.references Olin JS (ed) (1982) Future directions in archaeometry. A round table. Smithsonian Institution Press, Washington, DC es_ES
dc.description.references Townsend JH (2006) What is conservation science? Macromol Symp 238:1–10 es_ES
dc.description.references Nadolny J (2003) The first century of published scientific analyses of the materials of historical painting and polychromy, circa 1780–1880. Rev Conserv 4:39–51 es_ES
dc.description.references Montero Ruiz I, Garcia Heras M, López-Romero E (2007) Arqueometría: cambios y tendencias actuales. Trabajos de Prehistoria 64:23–40 es_ES
dc.description.references Fernandes Vieira G, Sias Coelho LJ (2011) Arqueometría: Mirada histórica de una ciencia en desarrollo. Revista CPC 13:107–133 es_ES
dc.description.references Rees-Jones SG (1990) Early experiments in pigment analysis. Stud Conserv 35:93–101 es_ES
dc.description.references Allen RO (1989) The role of the chemists in archaeological studies. In: Allen RO (ed) Archaeological chemistry IV. Advances in chemistry. American Chemical Society, Washington DC, pp 1–17 es_ES
dc.description.references Plesters J (1956) Cross-sections and chemical analysis of paint samples. Stud Conserv 2:110–157 and references therein es_ES
dc.description.references Gilberg M (1987) Friedrich Rathgen: the father of modern archaeological conservation. J Am Inst Conserv 26:105–120 es_ES
dc.description.references Olin JS, Salmon ME, Olin CH (1969) Investigations of historical objects utilizing spectroscopy and other optical methods. Appl Optics 8:29–39 es_ES
dc.description.references Feller RL (1954) Dammar and mastic infrared analysis. Science 120:1069–1070 es_ES
dc.description.references Hall ET (1963) Methods of analysis (physical and microchemical) applied to paintings and antiquities. In: Thomson G (ed) Recent advances in conservation. Butterworths, London, pp 29–32 es_ES
dc.description.references Feigl F, Anger V (1972) Spot tests in inorganic analysis, 6th English edition, translated by Oesper RE. Elsevier, Amsterdam es_ES
dc.description.references Locke DC, Riley OH (1970) Chemical analysis of paint samples using the Weisz ring oven technique. Stud Conserv 15:94–101 es_ES
dc.description.references Mairinger F, Schreiner M (1986) Analysis of supports, grounds and pigments. In: van Schoute R, Verougstracte-Marcq H (eds) PACT 13, Xth Anniversary Meeting of PACT Group. Louvain-la Neuve, pp 171–183 (and references therein) es_ES
dc.description.references Vandenabeele P, Edwards HGM (2005) Overview: Raman spectrometry of artefacts. In: Edwards HGM, Chalmers JM (eds) Raman spectroscopy in archaeology and art history. The Royal Society of Chemistry, Cambridge, pp 169–178 es_ES
dc.description.references Tykot RH (2004) Scientific methods and applications to archaeological provenance studies. In: Proceedings of the International School of Physics “Enrico Fermi”. IOS Press, Amsterdam, pp 407–432 es_ES
dc.description.references Doménech-Carbó A, Doménech-Carbó MT, Valle-Algarra FM, Domine ME, Osete-Cortina L (2013) On the dehydroindigo contribution to Maya Blue. J Mat Sci 48:7171–7183 es_ES
dc.description.references Lovric M, Scholz F (1997) A model for the propagation of a redox reaction through microcrystals. J Solid State Electrochem 1:108–113 es_ES
dc.description.references Fitzgerald AG, Storey BE, Fabian D (1993) Quantitative microbeam analysis. Scottish Universities Sumer School in Physics and Institute of Physics Publishing, Bristol es_ES
dc.description.references Doménech-Carbó A (2015) Dating: an analytical task. ChemTexts 1:5 es_ES
dc.description.references Mairinger F, Schreiner M (1982) New methods of chemical analysis-a tool for the conservator. Science and Technology in the service of conservation, IIC, London, pp 5–13 es_ES
dc.description.references Malissa H, Benedetti-Pichler AA (1958) Anorganische qualitative Mikroanalyse. Springer, New York es_ES
dc.description.references Tertian R, Claisse F (1982) Principles of quantitative X-ray fluorescence analysis. Heyden, London es_ES
dc.description.references Mantler M, Schreiner M (2000) X-ray fluorescence spectrometry in art and archaeology. X-Ray Spectrom 29:3–17 es_ES
dc.description.references Scholz F (2015) Voltammetric techniques of analysis: the essentials. ChemTexts 1:17 es_ES
dc.description.references Inzelt G (2014) Crossing the bridge between thermodynamics and electrochemistry. From the potential of the cell reaction to the electrode potential. ChemTexts 1:2 es_ES
dc.description.references Milchev A (2016) Nucleation phenomena in electrochemical systems: thermodynamic concepts. ChemTexts 2:2 es_ES
dc.description.references Milchev A (2016) Nucleation phenomena in electrochemical systems: kinetic models. ChemTexts 2:4 es_ES
dc.description.references Seeber R, Zanardi C, Inzelt G (2015) Links between electrochemical thermodynamics and kinetics. ChemTexts 1:18 es_ES
dc.description.references Feist M (2015) Thermal analysis: basics, applications, and benefit. ChemTexts 1:8 es_ES
dc.description.references Stoiber RE, Morse SA (1994) Crystal identification with the polarizing microscope. Springer, Berlin es_ES
dc.description.references Goldstein JI, Newbury DE, Echlin P, Joy DC, Lyman CE, Echlin P, Lifshin E, Sawyer L, Michael JR (2003) Scanning electron microscopy and X-ray microanalysis. Plenum Press, New York es_ES
dc.description.references Doménech-Carbó A, Doménech-Carbó MT, Más-Barberá X (2007) Identification of lead pigments in nanosamples from ancient paintings and polychromed sculptures using voltammetry of nanoparticles/atomic force microscopy. Talanta 71:1569–1579 es_ES
dc.description.references Reedy TJ, Reedy ChL (1988) Statistical analysis in art conservation research. The Getty Conservation Institute, Los Angeles es_ES
dc.description.references Eastaugh N, Walsh V, Chaplin T, Siddall R (2004) Pigment compendium, optical microscopy of historical pigments. Elsevier, Oxford es_ES
dc.description.references Feller RL, Bayard M (1986) Terminology and procedures used in the systematic examination of pigment particles with polarizing microscope. In: Feller RL (ed) Artists’ pigment. A handbook of their history and characteristics, vol 1. National Gallery of Art, Washington, pp 285–298 es_ES
dc.description.references Feller RL (ed) (1986) Artists’ pigment. A handbook of their history and characteristics, vol 1. National Gallery of Art, Washington es_ES
dc.description.references Roy A (ed) (1993) Artists’ pigments. A handbook of their history and characteristics, vol 2. National Gallery of Art, Washington es_ES
dc.description.references FitzHugh EW (ed) (1997) Artists’ pigments. A handbook of their history and characteristics, vol 3. National Gallery of Art, Washington es_ES
dc.description.references Berrie BH (ed) (2007) Artists’ pigment. A handbook of their history and characteristics, vol 4. National Gallery of Art, Washington es_ES
dc.description.references Haynes WN (ed) (2015) CRC handbook for physics and chemistry, 96th edn. Taylor and Francis Group, UK es_ES
dc.description.references Fiedler I, Bayard MA (1986) Cadmium yellows, oranges and reds. In: Feller RL (ed) Artists’ pigment. A handbook of their history and characteristics, vol 1. National Gallery of Art, Washington, pp 65–108 es_ES
dc.description.references Domenech-Carbó MT, de Agredos Vazquez, Pascual ML, Osete-Cortina L, Domenech A, Guasch-Ferré N, Manzanilla LR, Vidal C (2012) Characterization of Pre-hispanic cosmetics found in a burial of the ancient city of Teotihuacan (Mexico). J Archaeol Sci 39:1043–1062 es_ES
dc.description.references Mühlethaler B, Thissen J (1993) Smalt. In: Roy A (ed) Artists’ pigments. A handbook of their history and characteristics, vol 2. National Gallery of Art, Washington, pp 113–130 es_ES
dc.description.references Musumarra G, Fichera M (1998) Chemometrics and cultural heritage. Chemometr Intell Lab Syst 44:363–372 es_ES
dc.description.references Hochleitner B, Schreiner M, Drakopoulos M, Snigireva I, Snigirev A (2005) Analysis of paint layers by light microscopy, scanning electron microscopy and synchrotron induced X-ray micro-diffraction. In: Van Grieken R, Janssens K (eds) Cultural heritage conservation and environment impact assessment by non-destructive testing and micro-analysis. AA Balkema Publishers, London, pp 171–182 es_ES
dc.description.references Švarcová S, Kočí E, Bezdička P, Hradil D, Hradilová J (2010) Evaluation of laboratory powder X-ray micro-diffraction for applications in the fields of cultural heritage and forensic science. Anal Bioanal Chem 398:1061–1076 es_ES
dc.description.references Van de Voorde L, Vekemans B, Verhaeven E, Tack P, DeWolf R, Garrevoet J, Vandenabeele P, Vincze L (2015) Analytical characterization of a new mobile X-ray fluorescence and X-ray diffraction instrument combined with a pigment identification case study. Spectrochim Acta B 110:14–19 es_ES
dc.description.references Hochleitner B, Desnica V, Mantler M, Schreiner M (2003) Historical pigments: a collection analyzed with X-ray diffraction analysis and X-ray fluorescence analysis in order to create a database. Spectrochim Acta B 58:641–649 es_ES
dc.description.references Middleton PS, Ospitali F, Di Lonardo F (2005) Case study: painters and decorators: Raman spectroscopic studies of five Romano-British villas and the Domus Coiedii at Suasa, Italy. In: Edwards HGM, Chalmers JM (eds) Raman spectroscopy in archaeology and art history. The Royal Society of Chemistry, Cambridge, pp 97–120 es_ES
dc.description.references Helwig K (1993) Iron oxide pigments: natural and synthetic. In: Roy A (ed) Artists’ pigments. A handbook of their history and characteristics, vol 2. National Gallery of Art, Washington, pp 39–95 es_ES
dc.description.references Silva CE, Silva LP, Edwards HGM, de Oliveira LFC (2006) Diffuse reflection FTIR spectral database of dyes and pigments. Anal Bioanal Chem 386:2183–2191 es_ES
dc.description.references Hummel DO (ed) (1985) Atlas of polymer and plastic analysis, vol 1, Polymers, structures and spectra. Hanser VCH, Münich es_ES
dc.description.references http://www.irug.org (consulted: 1 Feb 2016) es_ES
dc.description.references http://www.ehu.es/udps/database/database.html (consulted: 1 Feb 2016) es_ES
dc.description.references Burgio L, Clark RJH (2001) Library of FT-Raman spectra of pigments, minerals, pigment media and varnishes, and supplement to existing library of Raman spectra of pigments with visible excitation. Spectrochim Acta A 57:1491–1521 es_ES
dc.description.references http://www.chem.ucl.ac.uk/resources/raman/speclib.html (consulted: 1 Feb 2016) es_ES
dc.description.references Madariaga JM, Bersani D (2012) Special feature: Raman spectroscopy in art and archaeology. J Raman Spectrosc 43(11):1523–1844 es_ES
dc.description.references http://minerals.gps.caltech.edu/ (consulted: 1 Feb 2016) es_ES
dc.description.references http://www.rruff.info (consulted: 1 Feb 2016) es_ES
dc.description.references Frost RL, Martens WN, Rintoul L, Mahmutagic E, Kloprogge JT (2002) J Raman Spectrosc 33:252–259 es_ES
dc.description.references Smith D (2005) Overwiew: jewellery and precious stones. In: Edwards HGM, Chalmers JM (eds) Raman spectroscopy in archaeology and art history. The Royal Society of Chemistry, Cambridge, pp 335–378 es_ES
dc.description.references Weiner S, Bar-Yosef O (1990) States of preservation of bones from prehistoric sites in the Near East: a survey. J Archaeol Sci 17:187–196 es_ES
dc.description.references Chu V, Regev L, Weiner S, Boaretto E (2008) Differentiating between anthropogenic calcite in plaster, ash and natural calcite using infrared spectroscopy: implications in archaeology. J Archaeol Sci 35:905–911 es_ES
dc.description.references Beniash E, Aizenberg J, Addadi L, Weiner S (1997) Amorphous calcium carbonate transforms into calcite during sea-urchin larval spicule growth. Proc R Soc Lond Ser B 264:461–465 es_ES
dc.description.references Regev L, Poduska KM, Addadi L, Weiner S, Boaretto E (2010) Distinguishing between calcites formed by different mechanisms using infrared spectrometry: archaeological applications. J Archaeol Sci 37:3022–3029 es_ES
dc.description.references Farmer C (ed) (1974) The infrared spectra of mineral, Monograph 4. Mineralogical Society, London es_ES
dc.description.references Madejová J, Kečkéš J, Pálková H, Komadel P (2002) Identification of components in smectite/kaolinite mixtures. Clay Miner 37:377–388 es_ES
dc.description.references Šucha V, Środoń J, Clauer N, Elsass F, Eberl DD, Kraus I, Madejová J (2001) Weathering of smectite and illite–smectite under temperate climatic conditions. Clay Miner 36:403–419 es_ES
dc.description.references Doménech-Carbó A, Doménech-Carbó MT, López-López F, Valle-Algarra FM, Osete-Cortina L, Arcos-Von Haartman E (2013) Electrochemical characterization of egyptian blue pigment in wall paintings using the voltammetry of microparticles methodology. Electroanalysis 25:2621–2630 es_ES
dc.description.references Doménech-Carbó MT, Edwards HGM, Doménech-Carbó A, del Hoyo-Meléndez JM, de la Cruz-Cañizares J (2012) An authentication case study: Antonio Palomino vs. Vicente Guillo paintings in the vaulted ceiling of the Sant Joan del Mercat church (Valencia, Spain). J Raman Spectrosc 43:1250–1259 es_ES
dc.description.references Lovric M, Scholz F (1999) A model for the coupled transport of ions and electrons in redox conductive microcrystals. J Solid State Electrochem 3:172–175 es_ES
dc.description.references Oldham KB (1998) Voltammetry at a three phase junction. J Solid State Electrochem 2:367–377 es_ES
dc.description.references Doménech A, Doménech-Carbó MT, Gimeno-Adelantado JV, Bosch-Reig F, Saurí-Peris MC, Sánchez-Ramos S (2001) Electrochemical identification of iron oxide pigments (earths) from pictorial microsamples attached to graphite/polyester composite electrodes. Analyst 126:1764–1772 es_ES
dc.description.references Doménech A, Doménech-Carbó MT, Moya-Moreno MCM, Gimeno-Adelantado JV, Bosch-Reig F (2000) Identification of inorganic pigments from paintings and polychromed sculptures immobilized into polymer film electrodes by stripping differential pulse voltammetry. Anal Chim Acta 407:275–289 es_ES
dc.description.references Doménech-Carbó A, Doménech-Carbó MT, Valle-Algarra FM, Gimeno-Adelantado JV, Osete-Cortina L, Bosch-Reig F (2016) On-line database of voltammetric data of immobilized particles for identifying pigments and minerals in archaeometry, conservation and restoration (ELCHER database). Anal Chim Acta 927:1–12 es_ES
dc.description.references http://www.elcher.info (consulted: 1 July 2016) es_ES
dc.description.references Scholz F, Doménech-Carbó A (2010) Special feature: electrochemistry for conservation science. J Solid State Electrochem 14 es_ES
dc.description.references Domenech-Carbó A, Domenech-Carbó MT, Edwards HGM (2007) Identification of earth pigment by hierarchical cluster applied to solid state voltammetry. Application to a severely damaged frescoes. Electroanalysis 19:1890–1900 es_ES
dc.description.references Domenech-Carbó A, Domenech-Carbó MT, Vázquez de Agredos-Pascual ML (2006) Dehydroindigo: a new piece into the Maya Blue puzzle from the voltammetry of microparticles approach. J Phys Chem B 110:6027–6039 es_ES
dc.description.references Doménech-Carbó A, Doménech-Carbó MT, Vázquez de Agredos-Pascual ML (2007) Chemometric study of Maya Blue from the voltammetry of microparticles approach. Anal Chem 79:2812–2821 es_ES
dc.description.references Doménech-Carbó A, Doménech-Carbó MT, Vázquez de Agredos-Pascual ML (2011) From Maya Blue to ‘Maya Yellow’: a connection between ancient nanostructured materials from the voltammetry of microparticles. Angew Chem Int Edit 50:5741–5744 es_ES
dc.description.references Doménech-Carbó A, Doménech-Carbó MT, Vidal-Lorenzo C, Vázquez de Agredos-Pascual ML (2012) Insights into the Maya Blue Technology: greenish pellets from the ancient city of La Blanca. Angew Chem Int Ed 51:700–703 es_ES
dc.description.references Doménech-Carbó A, Doménech-Carbó MT, Osete-Cortina L, Montoya N (2012) Application of solid-state electrochemistry techniques to polyfunctional organic-inorganic hybrid materials: the Maya Blue problem. Micropor Mesopor Mater 166:123–130 es_ES
dc.description.references Doménech-Carbó MT, Osete-Cortina L, Doménech-Carbó A, Vázquez de Agredos-Pascual ML, Vidal-Lorenzo C (2014) Identification of indigoid compounds present in archaeological Maya blue by pyrolysis-silylation-gas chromatography–mass spectrometry. J Anal Appl Pyrol 105:355–362 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem