- -

Multidimensional stability analysis of a family of bi-parametric iterative methods

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Multidimensional stability analysis of a family of bi-parametric iterative methods

Show full item record

Cordero Barbero, A.; García-Maimo, J.; Torregrosa Sánchez, JR.; Vassileva, MP. (2017). Multidimensional stability analysis of a family of bi-parametric iterative methods. Journal of Mathematical Chemistry. 55(7):1461-1480. https://doi.org/10.1007/s10910-016-0724-6

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/106299

Files in this item

Item Metadata

Title: Multidimensional stability analysis of a family of bi-parametric iterative methods
Author: Cordero Barbero, Alicia García-Maimo, Javier Torregrosa Sánchez, Juan Ramón Vassileva, Maria P.
UPV Unit: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Embargo end date: 2018-08-01
Abstract:
[EN] In this paper, we present a multidimensional real dynamical study of the Ostrowsky-Chun family of iterative methods to solve systems of nonlinear equations. This family was defined initially for solving scalar equations ...[+]
Subjects: Nonlinear system of equations , Iterative method , Basin of attraction , Dynamical plane , Stability , Fisher's equation
Copyrigths: Reserva de todos los derechos
Source:
Journal of Mathematical Chemistry. (issn: 0259-9791 )
DOI: 10.1007/s10910-016-0724-6
Publisher:
Springer-Verlag
Publisher version: http://doi.org/10.1007/s10910-016-0724-6
Project ID:
info:eu-repo/grantAgreement/MINECO//MTM2014-52016-C2-2-P/ES/DISEÑO DE METODOS ITERATIVOS EFICIENTES PARA RESOLVER PROBLEMAS NO LINEALES: CONVERGENCIA, COMPORTAMIENTO DINAMICO Y APLICACIONES. ECUACIONES MATRICIALES./
info:eu-repo/grantAgreement/FONDOCYT//2014-1C1-088/
Thanks:
This research was partially supported by Ministerio de Economia y Competitividad MTM2014-52016-C02-2-P and FONDOCYT 2014-1C1-088 Republica Dominicana.
Type: Artículo

References

A. Cordero, J. García-Maimó, J.R. Torregrosa, M.P. Vassileva, Solving nonlinear problems by Ostrowski-Chun type parametric families. J. Math. Chem. 53, 430–449 (2015)

Á.A. Magreñán, Different anomalies in a Jarratt family of iterative root-finding methods. Appl. Math. Comput. 233, 29–38 (2014)

B. Neta, C. Chun, M. Scott, Basins of attraction for optimal eighth order methods to find simple roots of nonlinear equations. Appl. Math. Comput. 227, 567–592 (2014) [+]
A. Cordero, J. García-Maimó, J.R. Torregrosa, M.P. Vassileva, Solving nonlinear problems by Ostrowski-Chun type parametric families. J. Math. Chem. 53, 430–449 (2015)

Á.A. Magreñán, Different anomalies in a Jarratt family of iterative root-finding methods. Appl. Math. Comput. 233, 29–38 (2014)

B. Neta, C. Chun, M. Scott, Basins of attraction for optimal eighth order methods to find simple roots of nonlinear equations. Appl. Math. Comput. 227, 567–592 (2014)

A. Cordero, J. García-Maimó, J.R. Torregrosa, M.P. Vassileva, P. Vindel, Chaos in King’s iterative family. Appli. Math. Lett. 26(8), 842–848 (2013)

A. Cordero, J.R. Torregrosa, F. Soleymani, Dynamical analysis of iterative methods for nonlinear systems or how to deal with the dimension? Appl. Math. Comput. 244, 398–412 (2014)

R.C. Robinson, An introduction to dynamical systems, continous and discrete (Americal Mathematical Society, Providence, 2012)

A. Cordero, J. García-Maimó, J.R. Torregrosa, M.P. Vassileva, Stability of a fourth order bi-parametric family of iterative methods. Journal of Computational and Applied Mathematics (2016). doi: 10.1016/j.cam.2016.01.013

R.A. Fisher, The wave of advance of advantageous genes. Ann. Eugenics 7, 353–369 (1937)

M. Abad, A. Cordero, J.R. Torregrosa, A family of seventh-order schemes for solving nonlinear systems. Bull. Math. Soc. Sci. Math. Roumanie 57(105), 133–145 (2014)

D. Budzko, A. Cordero, J.R. Torregrosa, A new family of iterative methods widening areas of convergence. Appl. Math. Comput. 252, 405–417 (2015)

A. Magreñan, A new tool to study real dynamics: the convergence plane. Appl. Math. Comput. 248, 215–224 (2014)

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record