- -

Multidimensional stability analysis of a family of bi-parametric iterative methods

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Multidimensional stability analysis of a family of bi-parametric iterative methods

Mostrar el registro completo del ítem

Cordero Barbero, A.; García-Maimo, J.; Torregrosa Sánchez, JR.; Vassileva, MP. (2017). Multidimensional stability analysis of a family of bi-parametric iterative methods. Journal of Mathematical Chemistry. 55(7):1461-1480. https://doi.org/10.1007/s10910-016-0724-6

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/106299

Ficheros en el ítem

Metadatos del ítem

Título: Multidimensional stability analysis of a family of bi-parametric iterative methods
Autor: Cordero Barbero, Alicia García-Maimo, Javier Torregrosa Sánchez, Juan Ramón Vassileva, Maria P.
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Fecha de fin de embargo: 2018-08-01
Resumen:
[EN] In this paper, we present a multidimensional real dynamical study of the Ostrowsky-Chun family of iterative methods to solve systems of nonlinear equations. This family was defined initially for solving scalar equations ...[+]
Palabras clave: Nonlinear system of equations , Iterative method , Basin of attraction , Dynamical plane , Stability , Fisher's equation
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of Mathematical Chemistry. (issn: 0259-9791 )
DOI: 10.1007/s10910-016-0724-6
Editorial:
Springer-Verlag
Versión del editor: http://doi.org/10.1007/s10910-016-0724-6
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//MTM2014-52016-C2-2-P/ES/DISEÑO DE METODOS ITERATIVOS EFICIENTES PARA RESOLVER PROBLEMAS NO LINEALES: CONVERGENCIA, COMPORTAMIENTO DINAMICO Y APLICACIONES. ECUACIONES MATRICIALES./
info:eu-repo/grantAgreement/FONDOCYT//2014-1C1-088/
Agradecimientos:
This research was partially supported by Ministerio de Economia y Competitividad MTM2014-52016-C02-2-P and FONDOCYT 2014-1C1-088 Republica Dominicana.
Tipo: Artículo

References

A. Cordero, J. García-Maimó, J.R. Torregrosa, M.P. Vassileva, Solving nonlinear problems by Ostrowski-Chun type parametric families. J. Math. Chem. 53, 430–449 (2015)

Á.A. Magreñán, Different anomalies in a Jarratt family of iterative root-finding methods. Appl. Math. Comput. 233, 29–38 (2014)

B. Neta, C. Chun, M. Scott, Basins of attraction for optimal eighth order methods to find simple roots of nonlinear equations. Appl. Math. Comput. 227, 567–592 (2014) [+]
A. Cordero, J. García-Maimó, J.R. Torregrosa, M.P. Vassileva, Solving nonlinear problems by Ostrowski-Chun type parametric families. J. Math. Chem. 53, 430–449 (2015)

Á.A. Magreñán, Different anomalies in a Jarratt family of iterative root-finding methods. Appl. Math. Comput. 233, 29–38 (2014)

B. Neta, C. Chun, M. Scott, Basins of attraction for optimal eighth order methods to find simple roots of nonlinear equations. Appl. Math. Comput. 227, 567–592 (2014)

A. Cordero, J. García-Maimó, J.R. Torregrosa, M.P. Vassileva, P. Vindel, Chaos in King’s iterative family. Appli. Math. Lett. 26(8), 842–848 (2013)

A. Cordero, J.R. Torregrosa, F. Soleymani, Dynamical analysis of iterative methods for nonlinear systems or how to deal with the dimension? Appl. Math. Comput. 244, 398–412 (2014)

R.C. Robinson, An introduction to dynamical systems, continous and discrete (Americal Mathematical Society, Providence, 2012)

A. Cordero, J. García-Maimó, J.R. Torregrosa, M.P. Vassileva, Stability of a fourth order bi-parametric family of iterative methods. Journal of Computational and Applied Mathematics (2016). doi: 10.1016/j.cam.2016.01.013

R.A. Fisher, The wave of advance of advantageous genes. Ann. Eugenics 7, 353–369 (1937)

M. Abad, A. Cordero, J.R. Torregrosa, A family of seventh-order schemes for solving nonlinear systems. Bull. Math. Soc. Sci. Math. Roumanie 57(105), 133–145 (2014)

D. Budzko, A. Cordero, J.R. Torregrosa, A new family of iterative methods widening areas of convergence. Appl. Math. Comput. 252, 405–417 (2015)

A. Magreñan, A new tool to study real dynamics: the convergence plane. Appl. Math. Comput. 248, 215–224 (2014)

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem