- -

Multidimensional stability analysis of a family of bi-parametric iterative methods

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Multidimensional stability analysis of a family of bi-parametric iterative methods

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cordero Barbero, Alicia es_ES
dc.contributor.author García-Maimo, Javier es_ES
dc.contributor.author Torregrosa Sánchez, Juan Ramón es_ES
dc.contributor.author Vassileva, Maria P. es_ES
dc.date.accessioned 2018-07-26T07:07:48Z
dc.date.available 2018-07-26T07:07:48Z
dc.date.issued 2017 es_ES
dc.identifier.issn 0259-9791 es_ES
dc.identifier.uri http://hdl.handle.net/10251/106299
dc.description.abstract [EN] In this paper, we present a multidimensional real dynamical study of the Ostrowsky-Chun family of iterative methods to solve systems of nonlinear equations. This family was defined initially for solving scalar equations but, in general, scalar methods can be transferred to make them suitable to solve nonlinear systems. The complex dynamical behavior of the rational operator associated to a scalar method applied to low-degree polynomials has shown to be an efficient tool for analyzing the stability and reliability of the methods. However, a good scalar dynamical behavior does not guarantee a good one in multidimensional case. We found different real intervals where both parameters can be defined assuring a completely stable performance and also other regions where it is dangerous to select any of the parameters, as undesirable behavior as attracting elements that are not solution of the problem to be solved appear. This performance is checked on a problem of chemical wave propagation, Fisher's equation, where the difference in numerical results provided by those elements of the class with good stability properties and those showed to be unstable, is clear. es_ES
dc.description.sponsorship This research was partially supported by Ministerio de Economia y Competitividad MTM2014-52016-C02-2-P and FONDOCYT 2014-1C1-088 Republica Dominicana.
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Journal of Mathematical Chemistry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Nonlinear system of equations es_ES
dc.subject Iterative method es_ES
dc.subject Basin of attraction es_ES
dc.subject Dynamical plane es_ES
dc.subject Stability es_ES
dc.subject Fisher's equation es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Multidimensional stability analysis of a family of bi-parametric iterative methods es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10910-016-0724-6 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2014-52016-C2-2-P/ES/DISEÑO DE METODOS ITERATIVOS EFICIENTES PARA RESOLVER PROBLEMAS NO LINEALES: CONVERGENCIA, COMPORTAMIENTO DINAMICO Y APLICACIONES. ECUACIONES MATRICIALES./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FONDOCYT//2014-1C1-088/ es_ES
dc.rights.accessRights Abierto es_ES
dc.date.embargoEndDate 2018-08-01 es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Cordero Barbero, A.; García-Maimo, J.; Torregrosa Sánchez, JR.; Vassileva, MP. (2017). Multidimensional stability analysis of a family of bi-parametric iterative methods. Journal of Mathematical Chemistry. 55(7):1461-1480. https://doi.org/10.1007/s10910-016-0724-6 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1007/s10910-016-0724-6 es_ES
dc.description.upvformatpinicio 1461 es_ES
dc.description.upvformatpfin 1480 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 55 es_ES
dc.description.issue 7 es_ES
dc.relation.pasarela S\324471 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Fondo Nacional de Innovación y Desarrollo Científico y Tecnológico, República Dominicana es_ES
dc.description.references A. Cordero, J. García-Maimó, J.R. Torregrosa, M.P. Vassileva, Solving nonlinear problems by Ostrowski-Chun type parametric families. J. Math. Chem. 53, 430–449 (2015) es_ES
dc.description.references Á.A. Magreñán, Different anomalies in a Jarratt family of iterative root-finding methods. Appl. Math. Comput. 233, 29–38 (2014) es_ES
dc.description.references B. Neta, C. Chun, M. Scott, Basins of attraction for optimal eighth order methods to find simple roots of nonlinear equations. Appl. Math. Comput. 227, 567–592 (2014) es_ES
dc.description.references A. Cordero, J. García-Maimó, J.R. Torregrosa, M.P. Vassileva, P. Vindel, Chaos in King’s iterative family. Appli. Math. Lett. 26(8), 842–848 (2013) es_ES
dc.description.references A. Cordero, J.R. Torregrosa, F. Soleymani, Dynamical analysis of iterative methods for nonlinear systems or how to deal with the dimension? Appl. Math. Comput. 244, 398–412 (2014) es_ES
dc.description.references R.C. Robinson, An introduction to dynamical systems, continous and discrete (Americal Mathematical Society, Providence, 2012) es_ES
dc.description.references A. Cordero, J. García-Maimó, J.R. Torregrosa, M.P. Vassileva, Stability of a fourth order bi-parametric family of iterative methods. Journal of Computational and Applied Mathematics (2016). doi: 10.1016/j.cam.2016.01.013 es_ES
dc.description.references R.A. Fisher, The wave of advance of advantageous genes. Ann. Eugenics 7, 353–369 (1937) es_ES
dc.description.references M. Abad, A. Cordero, J.R. Torregrosa, A family of seventh-order schemes for solving nonlinear systems. Bull. Math. Soc. Sci. Math. Roumanie 57(105), 133–145 (2014) es_ES
dc.description.references D. Budzko, A. Cordero, J.R. Torregrosa, A new family of iterative methods widening areas of convergence. Appl. Math. Comput. 252, 405–417 (2015) es_ES
dc.description.references A. Magreñan, A new tool to study real dynamics: the convergence plane. Appl. Math. Comput. 248, 215–224 (2014) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem