Mostrar el registro sencillo del ítem
dc.contributor.author | Cordero Barbero, Alicia | es_ES |
dc.contributor.author | García-Maimo, Javier | es_ES |
dc.contributor.author | Torregrosa Sánchez, Juan Ramón | es_ES |
dc.contributor.author | Vassileva, Maria P. | es_ES |
dc.date.accessioned | 2018-07-26T07:07:48Z | |
dc.date.available | 2018-07-26T07:07:48Z | |
dc.date.issued | 2017 | es_ES |
dc.identifier.issn | 0259-9791 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/106299 | |
dc.description.abstract | [EN] In this paper, we present a multidimensional real dynamical study of the Ostrowsky-Chun family of iterative methods to solve systems of nonlinear equations. This family was defined initially for solving scalar equations but, in general, scalar methods can be transferred to make them suitable to solve nonlinear systems. The complex dynamical behavior of the rational operator associated to a scalar method applied to low-degree polynomials has shown to be an efficient tool for analyzing the stability and reliability of the methods. However, a good scalar dynamical behavior does not guarantee a good one in multidimensional case. We found different real intervals where both parameters can be defined assuring a completely stable performance and also other regions where it is dangerous to select any of the parameters, as undesirable behavior as attracting elements that are not solution of the problem to be solved appear. This performance is checked on a problem of chemical wave propagation, Fisher's equation, where the difference in numerical results provided by those elements of the class with good stability properties and those showed to be unstable, is clear. | es_ES |
dc.description.sponsorship | This research was partially supported by Ministerio de Economia y Competitividad MTM2014-52016-C02-2-P and FONDOCYT 2014-1C1-088 Republica Dominicana. | |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Journal of Mathematical Chemistry | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Nonlinear system of equations | es_ES |
dc.subject | Iterative method | es_ES |
dc.subject | Basin of attraction | es_ES |
dc.subject | Dynamical plane | es_ES |
dc.subject | Stability | es_ES |
dc.subject | Fisher's equation | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Multidimensional stability analysis of a family of bi-parametric iterative methods | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s10910-016-0724-6 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2014-52016-C2-2-P/ES/DISEÑO DE METODOS ITERATIVOS EFICIENTES PARA RESOLVER PROBLEMAS NO LINEALES: CONVERGENCIA, COMPORTAMIENTO DINAMICO Y APLICACIONES. ECUACIONES MATRICIALES./ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FONDOCYT//2014-1C1-088/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.date.embargoEndDate | 2018-08-01 | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Cordero Barbero, A.; García-Maimo, J.; Torregrosa Sánchez, JR.; Vassileva, MP. (2017). Multidimensional stability analysis of a family of bi-parametric iterative methods. Journal of Mathematical Chemistry. 55(7):1461-1480. https://doi.org/10.1007/s10910-016-0724-6 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1007/s10910-016-0724-6 | es_ES |
dc.description.upvformatpinicio | 1461 | es_ES |
dc.description.upvformatpfin | 1480 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 55 | es_ES |
dc.description.issue | 7 | es_ES |
dc.relation.pasarela | S\324471 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Fondo Nacional de Innovación y Desarrollo Científico y Tecnológico, República Dominicana | es_ES |
dc.description.references | A. Cordero, J. García-Maimó, J.R. Torregrosa, M.P. Vassileva, Solving nonlinear problems by Ostrowski-Chun type parametric families. J. Math. Chem. 53, 430–449 (2015) | es_ES |
dc.description.references | Á.A. Magreñán, Different anomalies in a Jarratt family of iterative root-finding methods. Appl. Math. Comput. 233, 29–38 (2014) | es_ES |
dc.description.references | B. Neta, C. Chun, M. Scott, Basins of attraction for optimal eighth order methods to find simple roots of nonlinear equations. Appl. Math. Comput. 227, 567–592 (2014) | es_ES |
dc.description.references | A. Cordero, J. García-Maimó, J.R. Torregrosa, M.P. Vassileva, P. Vindel, Chaos in King’s iterative family. Appli. Math. Lett. 26(8), 842–848 (2013) | es_ES |
dc.description.references | A. Cordero, J.R. Torregrosa, F. Soleymani, Dynamical analysis of iterative methods for nonlinear systems or how to deal with the dimension? Appl. Math. Comput. 244, 398–412 (2014) | es_ES |
dc.description.references | R.C. Robinson, An introduction to dynamical systems, continous and discrete (Americal Mathematical Society, Providence, 2012) | es_ES |
dc.description.references | A. Cordero, J. García-Maimó, J.R. Torregrosa, M.P. Vassileva, Stability of a fourth order bi-parametric family of iterative methods. Journal of Computational and Applied Mathematics (2016). doi: 10.1016/j.cam.2016.01.013 | es_ES |
dc.description.references | R.A. Fisher, The wave of advance of advantageous genes. Ann. Eugenics 7, 353–369 (1937) | es_ES |
dc.description.references | M. Abad, A. Cordero, J.R. Torregrosa, A family of seventh-order schemes for solving nonlinear systems. Bull. Math. Soc. Sci. Math. Roumanie 57(105), 133–145 (2014) | es_ES |
dc.description.references | D. Budzko, A. Cordero, J.R. Torregrosa, A new family of iterative methods widening areas of convergence. Appl. Math. Comput. 252, 405–417 (2015) | es_ES |
dc.description.references | A. Magreñan, A new tool to study real dynamics: the convergence plane. Appl. Math. Comput. 248, 215–224 (2014) | es_ES |