- -

Effects of dietary inclusions of red beet and betaine on the acute stress response and muscle lipid peroxidation in rainbow trout

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effects of dietary inclusions of red beet and betaine on the acute stress response and muscle lipid peroxidation in rainbow trout

Mostrar el registro completo del ítem

Pinedo-Gil, J.; Martín-Diana, AB.; Bertotto, D.; Sanz-Calvo, MÁ.; Jover Cerda, M.; Tomas-Vidal, A. (2018). Effects of dietary inclusions of red beet and betaine on the acute stress response and muscle lipid peroxidation in rainbow trout. Fish Physiology and Biochemistry. 44(3):939-948. doi:10.1007/s10695-018-0483-3

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/109427

Ficheros en el ítem

Metadatos del ítem

Título: Effects of dietary inclusions of red beet and betaine on the acute stress response and muscle lipid peroxidation in rainbow trout
Autor: Pinedo-Gil, Julia Martín-Diana, Ana Belén Bertotto, Daniela Sanz-Calvo, Miguel Ángel Jover Cerdá, Miguel Tomas-Vidal, A.
Entidad UPV: Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal
Fecha difusión:
Fecha de fin de embargo: 2019-06-30
Resumen:
[EN] This study evaluates the effects of red beet (RB) and betaine on rainbow trout submitted to an acute stress challenge. A control diet was compared with four experimental diets in which red beet (14 and 28%) and betaine ...[+]
Palabras clave: Red beet , Betaine , Rainbow trout , Acute stress challenge
Derechos de uso: Reserva de todos los derechos
Fuente:
Fish Physiology and Biochemistry. (issn: 0920-1742 )
DOI: 10.1007/s10695-018-0483-3
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s10695-018-0483-3
Tipo: Artículo

References

Aluru N, Vijayan MM (2006) Aryl hydrocarbon receptor activation impairs cortisol response to stress in rainbow trout by disrupting the rate limiting steps in steroidogenesis. Endocrinology 147:1895–1903

Ashley PJ (2007) Fish welfare: current issues in aquaculture. Appl Anim Behav Sci 104:199–235

Barton BA, Iwama GK (1991) Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Annu Rev Fish Dis 1:3–26 [+]
Aluru N, Vijayan MM (2006) Aryl hydrocarbon receptor activation impairs cortisol response to stress in rainbow trout by disrupting the rate limiting steps in steroidogenesis. Endocrinology 147:1895–1903

Ashley PJ (2007) Fish welfare: current issues in aquaculture. Appl Anim Behav Sci 104:199–235

Barton BA, Iwama GK (1991) Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Annu Rev Fish Dis 1:3–26

Bertotto D, Poltronieri C, Negrato E, Majolini D, Radaelli G, Simontacchi C (2010) Alternative matrices for cortisol measurement in fish. Aquac Res 41:1261–1267

Bertotto D, Poltronieri C, Negrato E, Richard J, Pascoli F, Simontacchi C, Radaelli G (2011) Whole body cortisol and expression of HSP70, IGF-I and MSTN in early development of sea bass subjected to heat shok. Gen Comp Endocrinol 174:44–50

Chagas EC, Val AL (2006) Ascorbic acid reduces the effects of hypoxia on the Amazon fish tambaqui. J Fish Biol 69:608–612

Cui XJ, Zhou QC, Liang HO, Yang J, Zhao LM (2010) Effects of dietary carbohydrate sources on the growth performance and hepatic carbohydrate metabolic enzyme activities of juvenile cobia (Rachycentron canadum Linnaeus.) Aquac Res 42:99–107

Dabrowski K, Lee KJ, Guz L, Verlhac V, Gabaudan J (2004) Effects of dietary ascorbic acid on oxygen stress (hypoxia or hyperoxia), growth and tissue vitamin concentration in juvenile rainbow trout (Oncorhynchus mykiss). Aquaculture 233:383–392

Enes P, Panserat S, Kaushik S, Oliva-Teles A (2006) Rapid metabolic adaptation of European sea beass (Dicentrarchus labrax) juveniles fed different carbohydrate sources after heat shock stress. Comp Biochem Physiol A 145:73–81

Fast MD, Hosoya S, Johnson SC, Alfonso LOB (2008) Cortisol response and immune-related effects of Atlantic salmon (Salmo salar Linnaeus) subjected to short- and long-term stress. Fish Shellfish Immunol 24:194–204

Francis G, Makkar HPS, Becker K (2001) Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture 199:197–227

Ganessan B, Anandan R, Lakshmanan PT (2011) Studies on the protective effects of betaine against oxidative damage during experimentally induced restraint stress in Wistar albino rats. Cell Stress Chaperones 16:641–652

Gesto M, López-Patiño MA, Hernández J, Soengas JL, Míguez JM (2013) The response of brain serotonergic and dopaminergic systems to an acute stressor in rainbow trout: a time course study. J Exp Biol 216:4435–4442

Gesto M, López-Patiño MA, Hernández J, Soengas JL, Míguez JM (2015) Gradation of the stress response in rainbow trout exposed to stressors of different severity: the role of brain serotonergic and dopaminergic systems. J Neuroendocrinol 27:131–141

Hemre GI, Mommsen TP, Krogdahl Å (2002) Carbohydrates in fish nutrition: effects on growth, glucose metabolism and heptic enzymes. Aquac Nutr 8:175–194

Ings JS, Vijayan MM, Servos MR (2012) Tissue-specific metabolic changes in response to an acute handling disturbance in juvenile rainbow trout exposed to municipal wastewater effluent. Aquat Toxicol 108:53–59

Janssens PA, Waterman J (1988) Hormonal regulation of gluconeogenesis and glycogenolysis in carp (Cyprinus carpio) liver pieces cultured in vitro. Comp Biochem Physiol 91A:451–457

Jeney G, Galeotti M, Volpatti D, Anderson DP (1997) Prevention of stress in rainbow trout (Oncorhynchus mykiss) fed diets containing different doses of glucan. Aquaculture 154:1–15

Kaplan LA, Pesce AJ (1984) Clinical chemistry: theory, analysis and correlation. Mosby, St. Louis, pp 1032–1036

Krogdahl Å, Sundby A, Olli JJ (2004) Atlantic salmon (Salmon salar) and rainbow trout (Oncorhynchus mykiss) digest and metabolize nutrients differently. Effects of water salinity and dietary starch levels. Aquaculture 229:335–360

Kujala TS, Vienola MS, Klika KD, Loponen JM, Pihlaja K (2002) Betalain and phenolic composition of four beetroot (Beta vulgaris) cultivars. Eur Food Res Technol 214:505–510

Kumar N, Jadhao SB, Chandan NK, Kumar K, Jha AK, Bhushan S, Kumar S, Rana RS (2012) Dietary choline, betaine and lecithin mitigate endosulfan-induced stress in Labeo rohita fingerlings. Fish Physiol Biochem 38:989–1000

Leveelahti L, Rytkönen KT, Renshaw GMC, Nikinmaa M (2014) Revisiting redox-active antioxidant defences in response to hypoxic challenge in both hypoxia-tolerant and hypoxia-sensitive fish species. Fish Physiol Biochem 40:183–191

Lushchak VI, Bagnyukova TV, Lushchak OV, Storey JM, Storey KB (2005) Hypoxia and recovery perturb free radical processes and antioxidant potential in common carp (Cyprinus carpio) tissues. Int J Bichem Cell Biol 37:1319–1330

Lushchak VI, Bagnyukova TV (2006) Temperature increase results in oxidative stress in goldfish tissues. 1. Indices of oxidative stress. Comp Biochem Physiol C 143:30–35

Madaro A, Olsen RE, Kristiansen TS, Ebbeson LOE, Nilsen TO, Flik G, Gorissen M (2015) Stress in Atlantic salmon: response to unpredictable chronic stress. J Exp Biol 218:2538–2550

Ming J, Xie J, Xu P, Ge X, Liu W, Ye J (2012) Effects of emodin and vitamin C on growth performance, biochemical parameters and two HSP70s mRNA expression of Wuchang bream (Megalobrama amblycephala Yih) under high temperature stress. Fish Shellfish Immunol 32:651–661

Mommsen TP, Vijayan MM, Moon TW (1999) Cortisol in teleosts: dynamics, mechanisms of action, and metabolic regulation. Rev Fish Biol Fish 9:211–268

Montero D, Tort L, Robaina L, Vergara JM, Izquierdo MS (2001) Low vitamin E in diet reduces stress resistance of gilthead seabream (Sparus aurta) juveniles. Fish Shellfish Immunol 11:473–490

Ortuño J, Esteban MA, Meseguer J (2003) Effect of dietary intake of vitamins C and E on the stress response of gilthead seabream (Sparus aurata L.) Fish Shellfish Immunol 14:145–156

Øverli Ø, Sørensen C, Kiessling A, Pottinger TG, Gjøen HM (2006) Selection for improved stress tolerance in rainbow trout (Oncorhynchus Mykiss) leads to reduced feed waste. Aquaculture 261:776–781

Pérez-Jiménez A, Peres H, Rubio VC, Oliva-Teles A (2012) The effect of hypoxia on intermediary metabolism and oxidative status in gilthead sea bream (Sparus aurata) fed on diets supplemented with methionine and white tea. Comp Biochem Physiol C 155:506–516

Pichavant K, Maxime V, Thébault MT, Ollivier H, Garnier JP, Bousquet B, Diouris M, Boeuf G, Nonnotte G (2002) Effects of hypoxia and subsequent recovery on turbot (Scophthalmus maximus): hormonal changes and anaerobic metabolism. Mar Ecol Prog Ser 225:275–285

Pinedo-Gil J, Tomás-Vidal A, Larrán-García AM, Tomás-Almenar C, Jover-Cerdá M, Sanz-Calvo MA, Martín-Diana AB (2017a) Enhancement of quality of rainbow trout (Oncorhynchus mykiss) flesh incorporating barley on diet without negative effect on rearing parameters. Aquacult Int 25:1005–1023. https://doi.org/10.1007/s10499-016-0091-0

Pinedo-Gil J, Tomás-Vidal A, Jover-Cerdá M, Tomás-Almenar C, Sanz-Calvo MA, Martín-Diana AB (2017b) Red beet and betaine as ingredients in diets of rainbow trout (Oncorhynchus mykiss): effects on growth performance, nutrient retention and flesh quality. Arch Anim Nutr 71:486–505. https://doi.org/10.1080/1745039X.2017.1391503

Rabeh NM (2015) Effect of red beetroot (Beta vulgaris L.) and its fresh juice against carbon tetrachloride induced hepatotoxicity in rats. World Appl Sci J 33(6):931–938

Rollo A, Sulpizio R, Nardi M, Silvi S, Orpianesi C, Caggiano M, Cresci A, Carnevalli O (2006) Live microbial feed supplement in aquaculture for improvement of stress tolerance. Fish Physiol Biochem 32:167–177

Sadoul B, Leguen I, Colson V, Friggens NC, Prunet P (2015) A multivariate analysis using physiology and behaviour to characterize robustness in two isogenic lines of rainbow trout exposed to a confinement stress. Physiol Behav 140:139–147

Tan Q, Xie S, Zhu X, Lei W, Yang Y (2006) Effect of dietary carbohydrates sources on growth performance and utilization for gibel carp (Carassius auratus) and Chinese longsnout catfish (Leiocassis Longirostris Günther). Aquac Nutr 12:61–70

Tintos A, Míguez JM, Mancera JM, Soengas JL (2006) Development of a microtitre plate indirect ELISA for measuring cortisol in teleosts, and evaluation of stress responses in rainbow trout and gilthead sea bream. J Fish Biol 68:251–263

Van Anholt RD, Spanings FAT, Koven WM, Nixon O, Wendelaar Bonga SE (2004) Arachidonic acid reduces the stress response of gilthead seabream, Sparus aurata L. J Exp Biol 207:3419–3430

Virtanen E (1995) Piecing together the betaine puzzle. Feed Min 3:12–17

Wu XY, Liu YJ, TIan LX, Mai KS, Yang HJ (2007) Utilization of several different carbohydrate sources by juvenile yellowfin seabream (Sparus latus). J Fish China 31(4):463–471

Yoshida Y, Itoh N, Hayakawa M, Piga R, Cynshi O, Jishage K, Niki E (2005) Lipid peroxidation induced by carbon tetrachloride and its inhibition by antioxidant as evaluated by an oxidative stress marker, HODE. Toxicol Appl Pharmacol 208:87–97

Zeng L, Wang YH, Ai CX, Zheng JL, Wu CW, Cai R (2016) Effects of β-glucan on ROS production and energy metabolism in yellow croaker (Pseudosciaena crocea) under acute hypoxic stress. Fish Physiol Biochem 42:1395–1405

Zolderdo AJ, Algera DA, Lawrence MJ, Gilmour KM, Fast MD, Thuswaldner J, Willmore WG, Cooke SJ (2016) Stress, nutrition and parental care in a teleost fish: exploring mechanisms with supplemental feeding and cortisol manipulation. J Exp Biol 219:1237–1248

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem