- -

Structure Adaptation in Stochastic Inverse Methods for Integrating Information

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Structure Adaptation in Stochastic Inverse Methods for Integrating Information

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Llopis Albert, Carlos es_ES
dc.contributor.author Merigó, José M. es_ES
dc.contributor.author Palacios Marqués, Daniel es_ES
dc.date.accessioned 2018-10-31T11:29:18Z
dc.date.available 2018-10-31T11:29:18Z
dc.date.issued 2015 es_ES
dc.identifier.issn 0920-4741 es_ES
dc.identifier.uri http://hdl.handle.net/10251/111633
dc.description.abstract [EN] The use of inverse modeling techniques has greatly increased during the past several years because the advances in numerical modeling and increased computing power. Most of these methods require an a priori definition of the stochastic structure of conductivity (K) fields that is inferred only from K measurements. Therefore, the additional conditioning data, that implicitly integrate information not captured by K data, might lead to changes in the a priori model. Different inverse methods allow different degrees of structure adaptation to the whole set of data during the conditioning procedure. This paper illustrates the application of a powerful stochastic inverse method, the Gradual Conditioning (GC) method, to two different sets of data, both non-multiGaussian. One is based on a 2D synthetic aquifer and another on a real-complex case study, the Macrodispersion Experiment (MADE-2), site on Columbus Air Force Base in Mississippi (USA). We have analyzed how additional data change the a priori model on account of the perturbations performed when constraining stochastic simulations to data. Results show how the GC method tends to honour the a priori model in the synthetic case, showing fluctuations around it for the different simulated fields. However, in the 3D real case study, it is shown how the a priori structure is slightly modified not obeying just to fluctuations but possibly to the effect of the additional information on K, implicit in piezometric and concentration data. We conclude that implementing inversion methods able to yield a posteriori structure that incorporate more data might be of great importance in real cases in order to reduce uncertainty and to deal with risk assessment projects. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Water Resources Management es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Stochastic inversion es_ES
dc.subject Gradual deformation es_ES
dc.subject Mass transport es_ES
dc.subject Secondary data Non-Gaussian es_ES
dc.subject.classification ORGANIZACION DE EMPRESAS es_ES
dc.subject.classification INGENIERIA MECANICA es_ES
dc.title Structure Adaptation in Stochastic Inverse Methods for Integrating Information es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11269-014-0829-2 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Organización de Empresas - Departament d'Organització d'Empreses es_ES
dc.description.bibliographicCitation Llopis Albert, C.; Merigó, JM.; Palacios Marqués, D. (2015). Structure Adaptation in Stochastic Inverse Methods for Integrating Information. Water Resources Management. 29(1):95-107. doi:10.1007/s11269-014-0829-2 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s11269-014-0829-2 es_ES
dc.description.upvformatpinicio 95 es_ES
dc.description.upvformatpfin 107 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 29 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\300509 es_ES
dc.description.references Abolverdi J, Khalili D (2010) Development of regional rainfall annual maxima for Southwestern Iran by LMoments. Water Resour Manag 24(11):2501–2526 es_ES
dc.description.references Adams EE, Gelhar LW (1992) Field study of dispersion in a heterogeneous aquifer 2. Spatial moments analysis. Water Resour Res 28(12):3293–3307 es_ES
dc.description.references Boggs JM, Adams EE (1992) Field study of dispersion in a heterogeneous aquifer. 4. Investigation of adsorption and sampling bias. Water Resour Res 28(12):3325–3336 es_ES
dc.description.references Boggs JM, Young SC, Beard LM (1992) Field study of dispersion in a heterogeneous aquifer. 1. Overview and site description. Water Resour Res 28(12):3281–3291 es_ES
dc.description.references Caers J (2007) Comparing the gradual deformation with the probability perturbation method for solving inverse problems. Math Geol 39(1). doi:10.1007/s11004-006-9064-6 es_ES
dc.description.references Capilla JE, Llopis-Albert C (2009) Gradual conditioning of non-Gaussian transmissivity fields to flow and mass transport data: 1. Theory. J Hydrol 371:66–74 es_ES
dc.description.references Carrera J, Alcolea A, Medina A, Hidalgo J, Slooten LJ (2005) Inverse problem in hydrogeology. J Hydrogeol 13:206–222 es_ES
dc.description.references Charalambous J, Rahman A, Carroll D (2013) Application of Monte Carlo simulation technique to design flood estimation: a case study for North Johnstone River in Queensland, Australia. Water Resour Manag 27:4099–4111. doi: 10.1007/s11269-013-0398-9 es_ES
dc.description.references De Marsily G, Delhomme JP, Coudrain-Ribstein A, Lavenue AM (2000) Four decades of inverse problems in hydrogeology. Geol Soc Am (Special Paper 348) es_ES
dc.description.references Doherty J (1994) PEST: Corinda, Australia. Watermark Computing, 122 p es_ES
dc.description.references Gómez-Hernández JJ, Srivastava RM (1990) ISIM3D: An ANSI-C three dimensional multiple indicator conditional simulation program. Comput Geosci 16(4):395–440 es_ES
dc.description.references Gómez-Hernández JJ, Wen XH (1998) To be or not to be multiGaussian? A reflection on stochastic hydrogeology. Adv Water Resour 21(1):47–61 es_ES
dc.description.references Gómez-Hernández JJ, Sahuquillo A, Capilla JE (1997) Stochastic simulation of transmissivity fields conditional to both transmissivity and piezometric data. 1. Theory. J Hydrol 203:162–174 es_ES
dc.description.references Hu LY (2000) Gradual deformation and iterative calibration of gaussian-related stochastic models. Math Geol 32(1):87–108 es_ES
dc.description.references Llopis-Albert C, Capilla JE (2009a) Gradual conditioning of non-gaussian transmissivity fields to flow and mass transport Data: 3. Application to the Macrodispersion experiment (MADE-2) site, on Columbus air force base in Mississippi (USA). J Hydrol 371:75–84 es_ES
dc.description.references Llopis-Albert C, Capilla JE (2009b) Gradual conditioning of non-Gaussian transmissivity fields to flow and mass transport data: 2. Demonstration on a synthetic aquifer. J Hydrol 371:53–65 es_ES
dc.description.references Llopis-Albert C, Capilla JE (2010a) Stochastic inverse modeling of hydraulic conductivity fields taking into account independent stochastic structures: a 3D case study. J Hydrol 391:277–288 es_ES
dc.description.references Llopis-Albert C, Capilla JE (2010b) Stochastic simulation of non-Gaussian 3D conductivity fields in a fractured medium with multiple statistical populations: a case study. J Hydrol Eng 15(7):554–566 es_ES
dc.description.references Llopis-Albert C., Capilla JE (2011) Change of the a priori stochastic structure in the conditional simulation of transmissivity fields. P.M. Atkinson and C.D. Lloyd (eds.), geoENV VII – Geostatistics for Environmental Applications, Quant Geol Geostat 16. Springer. ISBN: 9048123216 es_ES
dc.description.references Llopis-Albert C, Palacios-Marqués D, Merigó JM (2014) A coupled stochastic inverse-management framework for dealing with nonpoint agriculture pollution under groundwater parameter uncertainty. J Hydrol 511:10–16. doi: 10.1016/j.jhydrol.2014.01.021 es_ES
dc.description.references McLaughlin D, Townley LR (1996) A reassessment of the groundwater inverse problem. Water Resour Res 32(5):1131–1161 es_ES
dc.description.references Mylopoulos YA, Theodosiou N, Mylopoulos NA (1999) A stochastic optimization approach in the design of an aquifer remediation under Hydrogeologic uncertainty. Water Resour Manag 13(5):335–351 es_ES
dc.description.references Neupauer RM, Wilson JL (1999) Adjoint method for obtaining backward-in-time location and travel time probabilities of a conservative groundwater contaminant. Water Resour Res 35(11):3389–3398 es_ES
dc.description.references Oliver DS, Chen Y (2010) Recent progress on reservoir history matching: a review. Comput Geosci 15(1):185–221 es_ES
dc.description.references Poeter EP, Hill MC (1998) Documentation of UCODE, a computer code for universal inverse modeling. US Geol Surv Water Resour Investig Rep 98–4080:116 es_ES
dc.description.references Rehfeldt KR, Boggs JM, Gelhar LW (1992) Field study of dispersion in a heterogeneous aquifer 3. Geostatistical analysis of hydraulic conductivity. Water Resour Res 28(12):3309–3324 es_ES
dc.description.references Salamon P, Fernández-Garcia D, Gómez-Hernández JJ (2007) Modeling tracer transport at the MADE site: the importance of heterogeneity. Water Resour Res 43:W08404. doi: 10.1029/2006WR005522 es_ES
dc.description.references Vázquez RF, Beven K, Feyen J (2009) GLUE based assessment on the overall predictions of a MIKE SHE application. Water Resour Manag 23:1325–1349. doi: 10.1007/s11269-008-9329-6 es_ES
dc.description.references Yeh WWG (1986) Review of parameter identification procedures in groundwater hydrology: the inverse problem. Water Resour Res 22(2):95–108 es_ES
dc.description.references Zakaria ZA, Shabri A, Ahmad UN (2012) Regional frequency analysis of extreme rainfalls in the West Coast of Peninsular Malaysia using partial L-Moments. Water Resour Manag 26(15):4417–4433 es_ES
dc.description.references Zheng C, Bianchi M, Gorelick SM (2011) Lessons learned from 25 years of research at the MADE Site. Groundw 49(5):649–662 es_ES
dc.description.references Zhou H, Gómez-Hernández JJ, Li L (2014) Inverse methods in hydrogeology: evolution and recent trends. Adv Water Resour 63:22–37. doi: 10.1016/j.advwatres.2013.10.014 es_ES
dc.description.references Zimmerman DA et al (1998) A comparison of seven geostatistically based inverse approaches to estimate transmissivities for modeling advective transport by groundwater flow. Water Resour Res 34(6):1373–1413 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem