Abolverdi J, Khalili D (2010) Development of regional rainfall annual maxima for Southwestern Iran by LMoments. Water Resour Manag 24(11):2501–2526
Adams EE, Gelhar LW (1992) Field study of dispersion in a heterogeneous aquifer 2. Spatial moments analysis. Water Resour Res 28(12):3293–3307
Boggs JM, Adams EE (1992) Field study of dispersion in a heterogeneous aquifer. 4. Investigation of adsorption and sampling bias. Water Resour Res 28(12):3325–3336
[+]
Abolverdi J, Khalili D (2010) Development of regional rainfall annual maxima for Southwestern Iran by LMoments. Water Resour Manag 24(11):2501–2526
Adams EE, Gelhar LW (1992) Field study of dispersion in a heterogeneous aquifer 2. Spatial moments analysis. Water Resour Res 28(12):3293–3307
Boggs JM, Adams EE (1992) Field study of dispersion in a heterogeneous aquifer. 4. Investigation of adsorption and sampling bias. Water Resour Res 28(12):3325–3336
Boggs JM, Young SC, Beard LM (1992) Field study of dispersion in a heterogeneous aquifer. 1. Overview and site description. Water Resour Res 28(12):3281–3291
Caers J (2007) Comparing the gradual deformation with the probability perturbation method for solving inverse problems. Math Geol 39(1). doi:10.1007/s11004-006-9064-6
Capilla JE, Llopis-Albert C (2009) Gradual conditioning of non-Gaussian transmissivity fields to flow and mass transport data: 1. Theory. J Hydrol 371:66–74
Carrera J, Alcolea A, Medina A, Hidalgo J, Slooten LJ (2005) Inverse problem in hydrogeology. J Hydrogeol 13:206–222
Charalambous J, Rahman A, Carroll D (2013) Application of Monte Carlo simulation technique to design flood estimation: a case study for North Johnstone River in Queensland, Australia. Water Resour Manag 27:4099–4111. doi: 10.1007/s11269-013-0398-9
De Marsily G, Delhomme JP, Coudrain-Ribstein A, Lavenue AM (2000) Four decades of inverse problems in hydrogeology. Geol Soc Am (Special Paper 348)
Doherty J (1994) PEST: Corinda, Australia. Watermark Computing, 122 p
Gómez-Hernández JJ, Srivastava RM (1990) ISIM3D: An ANSI-C three dimensional multiple indicator conditional simulation program. Comput Geosci 16(4):395–440
Gómez-Hernández JJ, Wen XH (1998) To be or not to be multiGaussian? A reflection on stochastic hydrogeology. Adv Water Resour 21(1):47–61
Gómez-Hernández JJ, Sahuquillo A, Capilla JE (1997) Stochastic simulation of transmissivity fields conditional to both transmissivity and piezometric data. 1. Theory. J Hydrol 203:162–174
Hu LY (2000) Gradual deformation and iterative calibration of gaussian-related stochastic models. Math Geol 32(1):87–108
Llopis-Albert C, Capilla JE (2009a) Gradual conditioning of non-gaussian transmissivity fields to flow and mass transport Data: 3. Application to the Macrodispersion experiment (MADE-2) site, on Columbus air force base in Mississippi (USA). J Hydrol 371:75–84
Llopis-Albert C, Capilla JE (2009b) Gradual conditioning of non-Gaussian transmissivity fields to flow and mass transport data: 2. Demonstration on a synthetic aquifer. J Hydrol 371:53–65
Llopis-Albert C, Capilla JE (2010a) Stochastic inverse modeling of hydraulic conductivity fields taking into account independent stochastic structures: a 3D case study. J Hydrol 391:277–288
Llopis-Albert C, Capilla JE (2010b) Stochastic simulation of non-Gaussian 3D conductivity fields in a fractured medium with multiple statistical populations: a case study. J Hydrol Eng 15(7):554–566
Llopis-Albert C., Capilla JE (2011) Change of the a priori stochastic structure in the conditional simulation of transmissivity fields. P.M. Atkinson and C.D. Lloyd (eds.), geoENV VII – Geostatistics for Environmental Applications, Quant Geol Geostat 16. Springer. ISBN: 9048123216
Llopis-Albert C, Palacios-Marqués D, Merigó JM (2014) A coupled stochastic inverse-management framework for dealing with nonpoint agriculture pollution under groundwater parameter uncertainty. J Hydrol 511:10–16. doi: 10.1016/j.jhydrol.2014.01.021
McLaughlin D, Townley LR (1996) A reassessment of the groundwater inverse problem. Water Resour Res 32(5):1131–1161
Mylopoulos YA, Theodosiou N, Mylopoulos NA (1999) A stochastic optimization approach in the design of an aquifer remediation under Hydrogeologic uncertainty. Water Resour Manag 13(5):335–351
Neupauer RM, Wilson JL (1999) Adjoint method for obtaining backward-in-time location and travel time probabilities of a conservative groundwater contaminant. Water Resour Res 35(11):3389–3398
Oliver DS, Chen Y (2010) Recent progress on reservoir history matching: a review. Comput Geosci 15(1):185–221
Poeter EP, Hill MC (1998) Documentation of UCODE, a computer code for universal inverse modeling. US Geol Surv Water Resour Investig Rep 98–4080:116
Rehfeldt KR, Boggs JM, Gelhar LW (1992) Field study of dispersion in a heterogeneous aquifer 3. Geostatistical analysis of hydraulic conductivity. Water Resour Res 28(12):3309–3324
Salamon P, Fernández-Garcia D, Gómez-Hernández JJ (2007) Modeling tracer transport at the MADE site: the importance of heterogeneity. Water Resour Res 43:W08404. doi: 10.1029/2006WR005522
Vázquez RF, Beven K, Feyen J (2009) GLUE based assessment on the overall predictions of a MIKE SHE application. Water Resour Manag 23:1325–1349. doi: 10.1007/s11269-008-9329-6
Yeh WWG (1986) Review of parameter identification procedures in groundwater hydrology: the inverse problem. Water Resour Res 22(2):95–108
Zakaria ZA, Shabri A, Ahmad UN (2012) Regional frequency analysis of extreme rainfalls in the West Coast of Peninsular Malaysia using partial L-Moments. Water Resour Manag 26(15):4417–4433
Zheng C, Bianchi M, Gorelick SM (2011) Lessons learned from 25 years of research at the MADE Site. Groundw 49(5):649–662
Zhou H, Gómez-Hernández JJ, Li L (2014) Inverse methods in hydrogeology: evolution and recent trends. Adv Water Resour 63:22–37. doi: 10.1016/j.advwatres.2013.10.014
Zimmerman DA et al (1998) A comparison of seven geostatistically based inverse approaches to estimate transmissivities for modeling advective transport by groundwater flow. Water Resour Res 34(6):1373–1413
[-]