- -

Structure Adaptation in Stochastic Inverse Methods for Integrating Information

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Structure Adaptation in Stochastic Inverse Methods for Integrating Information

Mostrar el registro completo del ítem

Llopis Albert, C.; Merigó, JM.; Palacios Marqués, D. (2015). Structure Adaptation in Stochastic Inverse Methods for Integrating Information. Water Resources Management. 29(1):95-107. doi:10.1007/s11269-014-0829-2

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/111633

Ficheros en el ítem

Metadatos del ítem

Título: Structure Adaptation in Stochastic Inverse Methods for Integrating Information
Autor: Llopis Albert, Carlos Merigó, José M. Palacios Marqués, Daniel
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Universitat Politècnica de València. Departamento de Organización de Empresas - Departament d'Organització d'Empreses
Fecha difusión:
Resumen:
[EN] The use of inverse modeling techniques has greatly increased during the past several years because the advances in numerical modeling and increased computing power. Most of these methods require an a priori definition ...[+]
Palabras clave: Stochastic inversion , Gradual deformation , Mass transport , Secondary data Non-Gaussian
Derechos de uso: Reserva de todos los derechos
Fuente:
Water Resources Management. (issn: 0920-4741 )
DOI: 10.1007/s11269-014-0829-2
Editorial:
Springer-Verlag
Versión del editor: http://dx.doi.org/10.1007/s11269-014-0829-2
Tipo: Artículo

References

Abolverdi J, Khalili D (2010) Development of regional rainfall annual maxima for Southwestern Iran by LMoments. Water Resour Manag 24(11):2501–2526

Adams EE, Gelhar LW (1992) Field study of dispersion in a heterogeneous aquifer 2. Spatial moments analysis. Water Resour Res 28(12):3293–3307

Boggs JM, Adams EE (1992) Field study of dispersion in a heterogeneous aquifer. 4. Investigation of adsorption and sampling bias. Water Resour Res 28(12):3325–3336 [+]
Abolverdi J, Khalili D (2010) Development of regional rainfall annual maxima for Southwestern Iran by LMoments. Water Resour Manag 24(11):2501–2526

Adams EE, Gelhar LW (1992) Field study of dispersion in a heterogeneous aquifer 2. Spatial moments analysis. Water Resour Res 28(12):3293–3307

Boggs JM, Adams EE (1992) Field study of dispersion in a heterogeneous aquifer. 4. Investigation of adsorption and sampling bias. Water Resour Res 28(12):3325–3336

Boggs JM, Young SC, Beard LM (1992) Field study of dispersion in a heterogeneous aquifer. 1. Overview and site description. Water Resour Res 28(12):3281–3291

Caers J (2007) Comparing the gradual deformation with the probability perturbation method for solving inverse problems. Math Geol 39(1). doi:10.1007/s11004-006-9064-6

Capilla JE, Llopis-Albert C (2009) Gradual conditioning of non-Gaussian transmissivity fields to flow and mass transport data: 1. Theory. J Hydrol 371:66–74

Carrera J, Alcolea A, Medina A, Hidalgo J, Slooten LJ (2005) Inverse problem in hydrogeology. J Hydrogeol 13:206–222

Charalambous J, Rahman A, Carroll D (2013) Application of Monte Carlo simulation technique to design flood estimation: a case study for North Johnstone River in Queensland, Australia. Water Resour Manag 27:4099–4111. doi: 10.1007/s11269-013-0398-9

De Marsily G, Delhomme JP, Coudrain-Ribstein A, Lavenue AM (2000) Four decades of inverse problems in hydrogeology. Geol Soc Am (Special Paper 348)

Doherty J (1994) PEST: Corinda, Australia. Watermark Computing, 122 p

Gómez-Hernández JJ, Srivastava RM (1990) ISIM3D: An ANSI-C three dimensional multiple indicator conditional simulation program. Comput Geosci 16(4):395–440

Gómez-Hernández JJ, Wen XH (1998) To be or not to be multiGaussian? A reflection on stochastic hydrogeology. Adv Water Resour 21(1):47–61

Gómez-Hernández JJ, Sahuquillo A, Capilla JE (1997) Stochastic simulation of transmissivity fields conditional to both transmissivity and piezometric data. 1. Theory. J Hydrol 203:162–174

Hu LY (2000) Gradual deformation and iterative calibration of gaussian-related stochastic models. Math Geol 32(1):87–108

Llopis-Albert C, Capilla JE (2009a) Gradual conditioning of non-gaussian transmissivity fields to flow and mass transport Data: 3. Application to the Macrodispersion experiment (MADE-2) site, on Columbus air force base in Mississippi (USA). J Hydrol 371:75–84

Llopis-Albert C, Capilla JE (2009b) Gradual conditioning of non-Gaussian transmissivity fields to flow and mass transport data: 2. Demonstration on a synthetic aquifer. J Hydrol 371:53–65

Llopis-Albert C, Capilla JE (2010a) Stochastic inverse modeling of hydraulic conductivity fields taking into account independent stochastic structures: a 3D case study. J Hydrol 391:277–288

Llopis-Albert C, Capilla JE (2010b) Stochastic simulation of non-Gaussian 3D conductivity fields in a fractured medium with multiple statistical populations: a case study. J Hydrol Eng 15(7):554–566

Llopis-Albert C., Capilla JE (2011) Change of the a priori stochastic structure in the conditional simulation of transmissivity fields. P.M. Atkinson and C.D. Lloyd (eds.), geoENV VII – Geostatistics for Environmental Applications, Quant Geol Geostat 16. Springer. ISBN: 9048123216

Llopis-Albert C, Palacios-Marqués D, Merigó JM (2014) A coupled stochastic inverse-management framework for dealing with nonpoint agriculture pollution under groundwater parameter uncertainty. J Hydrol 511:10–16. doi: 10.1016/j.jhydrol.2014.01.021

McLaughlin D, Townley LR (1996) A reassessment of the groundwater inverse problem. Water Resour Res 32(5):1131–1161

Mylopoulos YA, Theodosiou N, Mylopoulos NA (1999) A stochastic optimization approach in the design of an aquifer remediation under Hydrogeologic uncertainty. Water Resour Manag 13(5):335–351

Neupauer RM, Wilson JL (1999) Adjoint method for obtaining backward-in-time location and travel time probabilities of a conservative groundwater contaminant. Water Resour Res 35(11):3389–3398

Oliver DS, Chen Y (2010) Recent progress on reservoir history matching: a review. Comput Geosci 15(1):185–221

Poeter EP, Hill MC (1998) Documentation of UCODE, a computer code for universal inverse modeling. US Geol Surv Water Resour Investig Rep 98–4080:116

Rehfeldt KR, Boggs JM, Gelhar LW (1992) Field study of dispersion in a heterogeneous aquifer 3. Geostatistical analysis of hydraulic conductivity. Water Resour Res 28(12):3309–3324

Salamon P, Fernández-Garcia D, Gómez-Hernández JJ (2007) Modeling tracer transport at the MADE site: the importance of heterogeneity. Water Resour Res 43:W08404. doi: 10.1029/2006WR005522

Vázquez RF, Beven K, Feyen J (2009) GLUE based assessment on the overall predictions of a MIKE SHE application. Water Resour Manag 23:1325–1349. doi: 10.1007/s11269-008-9329-6

Yeh WWG (1986) Review of parameter identification procedures in groundwater hydrology: the inverse problem. Water Resour Res 22(2):95–108

Zakaria ZA, Shabri A, Ahmad UN (2012) Regional frequency analysis of extreme rainfalls in the West Coast of Peninsular Malaysia using partial L-Moments. Water Resour Manag 26(15):4417–4433

Zheng C, Bianchi M, Gorelick SM (2011) Lessons learned from 25 years of research at the MADE Site. Groundw 49(5):649–662

Zhou H, Gómez-Hernández JJ, Li L (2014) Inverse methods in hydrogeology: evolution and recent trends. Adv Water Resour 63:22–37. doi: 10.1016/j.advwatres.2013.10.014

Zimmerman DA et al (1998) A comparison of seven geostatistically based inverse approaches to estimate transmissivities for modeling advective transport by groundwater flow. Water Resour Res 34(6):1373–1413

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem