Mostrar el registro sencillo del ítem
dc.contributor.author | Martín-Esparza, M.E. | es_ES |
dc.contributor.author | Raigón Jiménez, Mª Dolores | es_ES |
dc.contributor.author | Raga-Soriano, Ana | es_ES |
dc.contributor.author | Albors, A. | es_ES |
dc.date.accessioned | 2019-02-17T21:03:48Z | |
dc.date.available | 2019-02-17T21:03:48Z | |
dc.date.issued | 2018 | es_ES |
dc.identifier.issn | 1935-5130 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/116796 | |
dc.description.abstract | [EN] Tiger nut flour (TNF) is a rich source of dietary fibre with potential to be used in cereal-based products. However, research on improving the rheological properties of tiger nut-based doughs is limited. In this paper, the significance of TNF and xanthan gum (X) incorporation into fresh egg pasta, in terms of its thermal and dynamic rheological properties, has been investigated. Plain semolina pasta (DWS) was used as control. High fibre doughs (20 and 40% TNF) with or without X (0 and 1%) were assessed. Both fundamental (dynamic oscillatory and creep tests) and empirical (texture profile analysis) tests were performed to assess the viscoelasticity of TNF-DWS composite blends. Raw solids (TNF, DWS) were characterised in terms of their chemical composition, particle size distribution and functional properties. For both fresh and cooked pasta, water activity, water content and gelatinisation temperatures were estimated. The results from the rheological tests revealed that partial replacement of DWS by TNF lead to less cohesive and weaker structures due to the lower presence of a gluten network. X significantly improved the rheological response of the TNF-based doughs. Thermal analysis showed a single endothermic peak in the temperature range between 60 and 78 degrees C during heating, which corresponds to the amylopectin gelatinisation. However, when replacing 40% of DWS by TNF, two-phase transitions were observed, probably associated to the starch tiger nut gelatinisation or the formation of amylose-lipid complexes. The optimum cooking time for the tiger nut pasta was 2min as determined by a calorimetric analysis. | es_ES |
dc.description.sponsorship | This work was supported by the Conselleria de Empresa, Universidad y Ciencia (Spain) throughout the project AICO/2016/056. Authors are thankful to Harinas Villamayor S.A. for providing raw materials for conducting this study. | |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Food and Bioprocess Technology | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Fresh pasta | es_ES |
dc.subject | Tiger nut flour | es_ES |
dc.subject | Fibre | es_ES |
dc.subject | Xanthan gum | es_ES |
dc.subject | Dynamic rheology | es_ES |
dc.subject | DSC | es_ES |
dc.subject.classification | TECNOLOGIA DE ALIMENTOS | es_ES |
dc.subject.classification | EDAFOLOGIA Y QUIMICA AGRICOLA | es_ES |
dc.title | Functional, Thermal and Rheological Properties of High Fibre Fresh Pasta: Effect of Tiger Nut Flour and Xanthan Gum Addition | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s11947-018-2172-8 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//AICO%2F2016%2F056/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Martín-Esparza, M.; Raigón Jiménez, MD.; Raga-Soriano, A.; Albors, A. (2018). Functional, Thermal and Rheological Properties of High Fibre Fresh Pasta: Effect of Tiger Nut Flour and Xanthan Gum Addition. Food and Bioprocess Technology. 11(12):2131-2141. https://doi.org/10.1007/s11947-018-2172-8 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1007/s11947-018-2172-8 | es_ES |
dc.description.upvformatpinicio | 2131 | es_ES |
dc.description.upvformatpfin | 2141 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 11 | es_ES |
dc.description.issue | 12 | es_ES |
dc.relation.pasarela | S\371311 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.description.references | AACC. (2000). Approved methods of the AACC (10th ed.). St. Paul: American Association of Cereal Chemists. | es_ES |
dc.description.references | AACC. (2005). Approved methods of the American Association of Cereal Chemists (10th ed.). St. Paul, Minn: AACC. | es_ES |
dc.description.references | Abo-El-Fetoh, S. M., Al-Sayed, H. M. A., & Nabih, N. M. N. (2010). Physicochemical properties of starch extracted from different sources and their application in pudding and white sauce. World Journal of Dairy & Food Sciences, 5(2), 173–182. | es_ES |
dc.description.references | Ade-Omowaye, B. I. O., Akinwande, B. A., Bolarinwa, I. F., & Adebiyi, A. O. (2008). Evaluation of tigernut (Cyperus esculentus) wheat composite flour and bread. African Journal of Food Science, 2, 87–91. | es_ES |
dc.description.references | AENOR. (2009). Particle size analysis-laser diffraction methods. ISO 13320:2009. Madrid, España: AENOR. | es_ES |
dc.description.references | Aguilar, N., Albanell, E., Miñarro, B., & Capellas, M. (2015). Chickpea and tiger nut flours as alternatives to emulsifier and shortening in gluten-free bread. LWT - Food Science and Technology, 62, 225–232. | es_ES |
dc.description.references | Ahn, H. J., Kim, J. H., & Ng, P. K. W. (2005). Functional and thermal properties of wheat, barley, and soy flours and their blends treated with a microbial transglutaminase. Journal of Food Science, 70, 380–386. | es_ES |
dc.description.references | Albors, A., Raigon, M. D., Garcia-Martinez, M. D., & Martin-Esparza, M. E. (2016). Assessment of techno-functional and sensory attributes of tiger nut fresh egg tagliatelle. LWT-Food Science and Technology, 74, 183–190. | es_ES |
dc.description.references | Alu’datt, M. H., Rababah, T., Ereifej, K., Alli, I., Alrababah, M. A., Almajwal, A., Masadeh, N., & Alhamad, M. N. (2012). Effects of barley flour and barley protein isolate on chemical, functional, nutritional and biological properties of Pita bread. Food Hydrocolloids, 26(1), 135–143. | es_ES |
dc.description.references | Angioloni, A., & Dalla Rosa, M. (2007). Effects of cysteine and mixing conditions on white/whole dough rheological properties. Journal of Food Engineering, 80, 18–23. | es_ES |
dc.description.references | Aravind, N., Sissons, M., Egan, N., & Fellows, C. (2012). Effect of insoluble dietary fibre addition on technological, sensory, and structural properties of durum wheat spaghetti. Food Chemistry, 130(2), 299–309. | es_ES |
dc.description.references | Biliaderis, C. G. (2009). Structural transitions and related physical properties of starch. Starch: Chemistry and Technology, 3, 293–372. | es_ES |
dc.description.references | Burgers, J. M. (1935). Mechanical considerations-model systems-phenomenological theories of relaxation and viscosity. In J. M. Burgers (Ed.), First report on viscosity and plasticity. New York: Nordemann Publishing Company. | es_ES |
dc.description.references | Buttriss, J. L., & Stokes, C. S. (2008). Dietary fibre and health: an overview. Food Nutrition Bulletin, 33(3), 186–200. | es_ES |
dc.description.references | Cai, J., Chiang, J. H., Tau, M. Y. P., Saur, L. K., Xu, Y., & Ngan-Loong, M. N. (2016). Physicochemical properties of hydrothermally treated glutinous rice flour and xanthan gum mixture and its applications in gluten-free noodles. Journal of Food Engineering, 186, 1–9. | es_ES |
dc.description.references | Cano, A., Fortunati, W., Chafer, A., Kenny, J. M., Chiralt, A., & Gonzalez-Martinez, C. (2015). Properties and ageing behaviour of pea starch films as affected by blend with poly(vinyl alcohol). Food Hydrocolloids, 48, 84–93. | es_ES |
dc.description.references | Cappa, C., & Alamprese, C. (2017). Brewer’s spent grain valorization in fiber-enriched fresh egg pasta production: Modelling and optimization study. LWT-Food Science and Technology, 82, 464–470. | es_ES |
dc.description.references | Chandalia, M., Garg, A., Lutjohann, D., von Bergmann, K., Grundy, S. M., Brinkley, L. J., et al. (2000). Beneficial effects of high dietary fiber intake in patients with type 2 diabetes mellitus. New England Journal of Medicine, 342(19), 1392–1398. | es_ES |
dc.description.references | Chillo, S., Civica, V., Ianneti, M., Suriano, N., Mastromatteo, M., & Del Nobile, M. A. (2009). Properties of quinoa and oat spaghetti loaded with carboxymethylcellulose sodium salt and pregelatinized starch as structuring agents. Carbohydrate Polymers, 78(4), 932–937. | es_ES |
dc.description.references | Demirkesen, I., Sumnu, G., & Sahin, S. (2013). Quality of Gluten-Free Bread Formulations Baked in Different Ovens. Food Bioprocess Technology, 6(3), 746–753. | es_ES |
dc.description.references | Edwards, N. M., Dexter, J. E., & Scanlon, M. G. (2001). The use of rheological techniques to elucidate durum wheat dough strength properties. Conference paper presented at ICHEAP-5. The 5th Italian Conference on Chemical and Process Engineering, Florence, Italy (Vol 2, pp. 825–830). | es_ES |
dc.description.references | Giuberti, G., Gallo, A., Fiorentini, L., Fortunati, P., & Masoero, F. (2016). In vitro starch digestibility and quality attributes of gluten free ‘tagliatelle’ prepared with teff flour and increasing levels of a new developed bean cultivar. Starch/Stärke, 68(2016), 374–378. | es_ES |
dc.description.references | Georgopoulos, T., Larsson, H., & Eliasson, A. C. (2004). A comparison of the rheological properties of wheat flour dough and its gluten prepared by ultracentrifugation. Food Hydrocolloids, 18(1), 143–151. | es_ES |
dc.description.references | Heywood, A. A., Myers, D. J., Bailey, T. B., & Johnson, L. A. (2002). Functional properties of low-fat soy flour produced by an extrusion expelling system. Journal of American Oil Chemistry Society, 79(12), 1249–1253. | es_ES |
dc.description.references | Kaczmarczyk, M. M., Miller, M. J., & Freund, G. G. (2012). The health benefits of dietary fiber: beyond the usual suspects of type 2 diabetes mellitus, cardiovascular disease and colon cancer. Metabolism, 61(8), 1058–1066. | es_ES |
dc.description.references | Kaur, G., Sharma, S., Nagi, H. P. S., & Dar, B. N. (2012). Functional properties of pasta enriched with variable cereal brans. Journal of Food Science and Technology-Mysore, 49(4), 467–474. | es_ES |
dc.description.references | Kendall, C. W. C., Esfahani, A., & Jenkins, D. J. A. (2010). The link between dietary fibre and human health. Food Hydrocolloids, 24(1), 42–48. | es_ES |
dc.description.references | Kim, B. R., Kim, S., Bae, G. S., Chang, M. B., & Moon, B. (2017). Quality characteristics of common wheat fresh noodle with insoluble dietary fiber from kimchi by-product. LWT-Food Science and Technology, 85, 240–245. | es_ES |
dc.description.references | la Gatta, B., Rutigliano, M., Padalino, L., Conte, A., del Nobile, M. A., & Di Luccia, A. (2017). The role of hydration on the cooking quality of bran-enriched pasta. LWT-Food Science and Technology, 84, 489–496. | es_ES |
dc.description.references | Larrosa, V., Lorenzo, G., Zaritzky, N., & Califano, A. (2013). Optimization of rheological properties of gluten-free pasta dough using mixture design. Journal of Cereal Science, 57(3), 520–526. | es_ES |
dc.description.references | Lazaridou, A., Duta, D., Papageorgion, M., Belc, N., & Biliaderis, C. G. (2007). Effect of hydrocoloids on dough rheology and bread quality parameters in gluten-free formulations. Journal of Food Engineering, 79(3), 1033–1047. | es_ES |
dc.description.references | Lin, C. S., & Zayas, J. F. (1987). Functionality of defatted corn germ proteins in a model system: fat binding capacity and water retention. Journal of Food Science, 52(5), 1308–1311. | es_ES |
dc.description.references | Mariusz, W., Juszczaka, L., Witczakb, T., Ziobroc, R., Korusc, J., & Cieślikd, E. (2012). Effect of inulin on rheological and thermal properties of gluten-free dough. Carbohydrate Polymers, 90(1), 353–360. | es_ES |
dc.description.references | Mastromatteo, M., Chillo, S., Iannetti, M., Civica, V., & Del Nobile, M. A. (2011). Formulation optimisation of gluten-free functional spaghetti based on quinoa, maize and soy flours. International Journal of Food Science and Technology, 46, 1201–1208. | es_ES |
dc.description.references | Narayana, K., & Narasinga Rao, M. S. (1982). Functional properties of raw and heat processed winged bean (Psophocarpus tetragonolobus) flour. Journal of Food Science, 47(5), 1534–1538. | es_ES |
dc.description.references | Official Journal of the European Union (2006). L 404/9e25. | es_ES |
dc.description.references | Olivera, D. F., & Salvadori, V. O. (2006). Textural characterisation of lasagna made from organic whole wheat. International Journal of Food Science and Technology, 41(2), 63–69. | es_ES |
dc.description.references | Padalino, L., Conte, A., Lecce, L., Likyova, D., Sicari, V., Pellicano, T. M., et al. (2017). Functional pasta with tomato by-product as a source of antioxidant compounds and dietary fibre. Czech Journal of Food Sciences, 35(1), 48–56. | es_ES |
dc.description.references | Rao, V. M. N., Delaney, R. A. M., & Skinner, G. E. (1986). Rheological properties of solid foods. In M. A. Rao & S. S. H. Rizvi (Eds.), Engineering properties of foods (pp. 215–226). New York: Marcel Dekker, Inc.. | es_ES |
dc.description.references | Romero, H. M., Santra, D., Rose, D., & Zhang, Y. (2017). Dough rheological properties and texture of gluten-free pasta based on proso millet flour. Journal of Cereal Science, 74, 238–243. | es_ES |
dc.description.references | Romo, C., Mize, K., & Warfel, K. (2008). Addition of hi-maize, natural dietary fiber, to a commercial cake mix. Journal of American Diet Association, 108, 76–77. | es_ES |
dc.description.references | Sánchez-Zapata, E., Fuentes-Zaragoza, E., Fernández-López, J., Sendra, E., Vayas, E., & Navarro, C. (2009). Preparation of dietary fiber powder from tigernut (Cyperus esculentus) milk (“horchata”) by products and its physicochemical properties. Journal of Agricultural and Food Chemistry, 57(17), 7719–7725. | es_ES |
dc.description.references | Schulze, M. B., Liu, S., Rimm, E. B., Manson, J. E., Willett, W. C., Hu, F. B., et al. (2004). Glycemic index, glycemic load, and dietary fiber intake and incidence of type 2 diabetes in younger and middle-aged women. American Journal of Clinical Nutrition, 80(2), 348–356. | es_ES |
dc.description.references | Sivaramakrishnan, H. P., Senge, B., & Chattopadhyay, P. (2004). Rheological properties of rice dough for making rice bread. Journal of Food Engineering, 62(1), 37–45. | es_ES |
dc.description.references | Sozer, N. (2009). Rheological properties of rice pasta dough supplemented with proteins and gums. Food Hydrocolloids, 23(3), 849–855. | es_ES |
dc.description.references | Szczesniak, A. S. (2002). Texture is a sensory property. Food Quality and Preference, 13, 215–225. | es_ES |
dc.description.references | Tester, R. F., & Debon, S. J. (2000). Annealing of starch: a review. International Journal of Biological Macromolecules, 27, 1–12. | es_ES |
dc.description.references | Traynham, T. L., Myers, D. J., Carriquiry, A. L., & Johnson, L. A. (2007). Evaluation of water-holding capacity for wheat–soy flour blends. Journal of American Oil Chemistry Society, 84, 151–155. | es_ES |
dc.description.references | Van Bockstaele, F., De Leyn, I., Eeckhout, M., & Dewettinck, K. (2011). Non-linear creep-recovery measurements as a tool for evaluating the viscoelastic properties of wheat flour dough. Journal of Food Engineering, 107(1), 50–59. | es_ES |
dc.description.references | WHO (2003). The World Health Report: 2003: shaping the future. Switzerland: World Health Organization. ISBN 9241562439. | es_ES |
dc.description.references | Wieser, H. (2007). Chemistry of gluten proteins. Food Microbiology, 24, 115–119. | es_ES |
dc.description.references | Witczak, M., Juszczak, L., Ziobro, R., & Korus, J. (2012). Influence of modified starches on properties of gluten-free dough and bread. Part I: rheological and thermal properties of gluten-free dough. Food Hydrocolloids, 28(2), 353–360. | es_ES |
dc.description.references | Yokoyama, W. H., Hudson, C. A., Knuckles, B. E., Chiu, M. C. M., Sayre, R. N., Turnlund, J. R., & Schneeman, B. O. (1997). Effect of barley beta-glucan in durum wheat pasta on human glycemic response. Cereal Chemistry, 74(3), 293–296. | es_ES |