- -

When is X × Y homeomorphic to X ×l Y?

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

When is X × Y homeomorphic to X ×l Y?

Mostrar el registro completo del ítem

Buzyakova, R. (2019). When is X × Y homeomorphic to X ×l Y?. Applied General Topology. 20(1):33-41. https://doi.org/10.4995/agt.2019.9135

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/118956

Ficheros en el ítem

Metadatos del ítem

Título: When is X × Y homeomorphic to X ×l Y?
Autor: Buzyakova, Raushan
Fecha difusión:
Resumen:
[EN] We identify a class of linearly ordered topological spaces X that may satisfy the property that X × X is homeomorphic to X ×l X or can be embedded into a linearly ordered space with the stated property. We justify the ...[+]
Palabras clave: Linearly ordered topological space , Lexicographical product , Homeomorphism , Ordinal
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2019.9135
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/agt.2019.9135
Tipo: Artículo

References

H. Bennet and D. Lutzer, Linearly ordered and generalized ordered spaces, Encyclopedia of General Topology, Elsevier, 2004. https://doi.org/10.1016/b978-044450355-8/50087-8

R. Buzyakova, Ordering a square, Topology Appl. 191 (2015), 76-81. https://doi.org/10.1016/j.topol.2015.05.020

R. Engelking, General topology, PWN, Warszawa, 1977. [+]
H. Bennet and D. Lutzer, Linearly ordered and generalized ordered spaces, Encyclopedia of General Topology, Elsevier, 2004. https://doi.org/10.1016/b978-044450355-8/50087-8

R. Buzyakova, Ordering a square, Topology Appl. 191 (2015), 76-81. https://doi.org/10.1016/j.topol.2015.05.020

R. Engelking, General topology, PWN, Warszawa, 1977.

D. Lutzer, Ordered Topological Spaces, Surveys in General Topology, edited by G. M. Reed., Academic Press, New York (1980), 247-296. https://doi.org/10.1016/B978-0-12-584960-9.50014-6

M. Katetov, Complete normality of cartesian products, Fund. Math. 36 (1948), 271-274. https://doi.org/10.4064/fm-35-1-271-274

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem