- -

Remarks on fixed point assertions in digital topology, 2

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Remarks on fixed point assertions in digital topology, 2

Mostrar el registro completo del ítem

Boxer, L. (2019). Remarks on fixed point assertions in digital topology, 2. Applied General Topology. 20(1):155-175. https://doi.org/10.4995/agt.2019.10667

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/118968

Ficheros en el ítem

Metadatos del ítem

Título: Remarks on fixed point assertions in digital topology, 2
Autor: Boxer, Laurence
Fecha difusión:
Resumen:
[EN] Several recent papers in digital topology have sought to obtain fixed point results by mimicking the use of tools from classical topology, such as complete metric spaces. We show that in many cases, researchers using ...[+]
Palabras clave: Digital topology , Fixed point , Metric space
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2019.10667
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/agt.2019.10667
Tipo: Artículo

References

L. Boxer, A classical construction for the digital fundamental group, Journal of Mathematical Imaging and Vision 10 (1999), 51-62. https://doi.org/10.1023/A:1008370600456

L. Boxer, Generalized normal product adjacency in digital topology, Applied General Topology 18, no. 2 (2017), 401-427. https://doi.org/10.4995/agt.2017.7798

L. Boxer, Alternate product adjacencies in digital topology, Applied General Topology 19, no. 1 (2018), 21-53. https://doi.org/10.4995/agt.2018.7146 [+]
L. Boxer, A classical construction for the digital fundamental group, Journal of Mathematical Imaging and Vision 10 (1999), 51-62. https://doi.org/10.1023/A:1008370600456

L. Boxer, Generalized normal product adjacency in digital topology, Applied General Topology 18, no. 2 (2017), 401-427. https://doi.org/10.4995/agt.2017.7798

L. Boxer, Alternate product adjacencies in digital topology, Applied General Topology 19, no. 1 (2018), 21-53. https://doi.org/10.4995/agt.2018.7146

L. Boxer, O. Ege, I. Karaca, J. Lopez and J. Louwsma, Digital fixed points, approximate fixed points, and universal functions, Applied General Topology 17, no. 2 (2016), 159-172. https://doi.org/10.4995/agt.2016.4704

L. Boxer and P. C. Staecker, Remarks on fixed point assertions in digital topology, Applied General Topology, Applied General Topology 20, no. 1 (2019), https://doi.org/10.4995/agt.2019.10474

S. Dalal, I. A. Masmali and G. Y. Alhamzi, Common fixed point results for compatible map in digital metric space, Advances in Pure Mathematics 8 (2018), 362-371. https://doi.org/10.4236/apm.2018.83019

U. P. Dolhare and V. V. Nalawade, Fixed point theorems in digital images and applications to fractal image compression, Asian Journal of Mathematics and Computer Research 25, no. 1 (2018), 18-37.

O. Ege and I. Karaca, Banach fixed point theorem for digital images, Journal of Nonlinear Sciences and Applications 8 (2015), 237-245. https://doi.org/10.22436/jnsa.008.03.08

G. Herman, Oriented surfaces in digital spaces, CVGIP: Graphical Models and Image Processing 55 (1993), 381-396. https://doi.org/10.1006/cgip.1993.1029

S.-E. Han, Banach fixed point theorem from the viewpoint of digital topology, Journal of Nonlinear Science and Applications 9 (2016), 895-905. https://doi.org/10.22436/jnsa.009.03.19

A. Hossain, R. Ferdausi, S. Mondal and H. Rashid, Banach and Edelstein fixed point theorems for digital images, Journal of Mathematical Sciences and Applications 5, no. 2 (2017), 36-39. https://doi.org/10.12691/jmsa-5-2-2

D. Jain, Common fixed point theorem for intimate mappings in digital metric spaces, International Journal of Mathematics Trends and Technology 56, no. 2 (2018), 91-94. https://doi.org/10.14445/22315373/IJMTT-V56P511

K. Jyoti and A. Rani, Fixed point results for expansive mappings in digital metric spaces, International Journal of Mathematical Archive 8, no. 6 (2017), 265-270.

K. Jyoti and A. Rani, Digital expansions endowed with fixed point theory, Turkish Journal of Analysis and Number Theory 5, no. 5 (2017), 146-152. https://doi.org/10.12691/tjant-5-5-1

K. Jyoti and A. Rani, Fixed point theorems for β−ψ−φ-expansive type mappings in digital metric spaces, Asian Journal of Mathematics and Computer Research 24, no. 2 (2018), 56-66.

L. N. Mishra, K. Jyoti, A. Rani and Vandana, Fixed point theorems with digital contractions image processing, Nonlinear Science Letters A 9, no. 2 (2018), 104-115.

C. Park, O. Ege, S. Kumar, D. Jain and J. R. Lee, Fixed point theorems for various contraction conditions in digital metric spaces, Journal of Computational Analysis and Applications 26, no. 8 (2019), 1451-1458.

A. Rani, K. Jyoti and A. Rani, Common fixed point theorems in digital metric spaces, International Journal of Scientific & Engineering Research 7, no. 12 (2016), 1704-1715.

A. Rosenfeld, 'Continuous' functions on digital images, Pattern Recognition Letters 4 (1986), 177-184. https://doi.org/10.1016/0167-8655(86)90017-6

B. Samet, C. Vetro, and P. Vetro, Fixed point theorems for contractive mappings, Nonlinear Analysis: Theory, Methods & Applications 75, no. 4 (2012), 2154-2165. https://doi.org/10.1016/j.na.2011.10.014

K. Sridevi, M. V. R. Kameswari and D. M. K. Kiran, Fixed point theorems for digital contractive type mappings in digital metric spaces, International Journal of Mathematics Trends and Technology 48, no. 3 (2017), 159-167. https://doi.org/10.14445/22315373/IJMTT-V48P522

K. Sridevi, M. V. R. Kameswari and D. M. K. Kiran, Common fixed points for commuting and weakly compatible self-maps on digital metric spaces, International Advanced Research Journal in Science, Engineering and Technology 4, no. 9 (2017), 21-27.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem