- -

A quantitative version of the Arzelà-Ascoli theorem based on the degree of nondensifiability and applications

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A quantitative version of the Arzelà-Ascoli theorem based on the degree of nondensifiability and applications

Show full item record

García, G. (2019). A quantitative version of the Arzelà-Ascoli theorem based on the degree of nondensifiability and applications. Applied General Topology. 20(1):265-279. https://doi.org/10.4995/agt.2019.10930

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/118976

Files in this item

Item Metadata

Title: A quantitative version of the Arzelà-Ascoli theorem based on the degree of nondensifiability and applications
Author:
Issued date:
Abstract:
[EN] We present a novel result that, in a certain sense, generalizes the Arzelà-Ascoli theorem. Our main tool will be the so called degree of nondensifiability, which is not a measure of noncompactness but canbe used as ...[+]
Subjects: Arzelà-Ascoli theorem , Degree of nondensifiability , α-dense curves , Measures of noncompactness , Volterra integral equations
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2019.10930
Publisher:
Universitat Politècnica de València
Publisher version: https://doi.org/10.4995/agt.2019.10930
Thanks:
To the anonymous referee, for his/her useful comments and suggestions to improve the quality of the paper. Also, to my beloved Loli, for her carefully revision of the English grammar to improve the presentation.
Type: Artículo

References

R. R. Akhmerov, M. I. Kamenskii, A. S. Potapov, A. E. Rodkina and B. N. Sadovskii, Measure of Noncompactness and Condensing Operators, Birkhäuser Verlag, Basel, 1992. https://doi.org/10.1007/978-3-0348-5727-7

A. Ambrosetti, Un teorema di esistenza per le equazioni differentiali negli spazi di Banach, Rend. Sem. Mat. Padove 39 (1967), 349-361.

J. M. Ayerbe Toledano, T. Domínguez Benavides and G. López Acedo, Measures of Noncompactness in Metric Fixed Point Theory, Birkhäuser, Basel, 1997. https://doi.org/10.1007/978-3-0348-8920-9_3 [+]
R. R. Akhmerov, M. I. Kamenskii, A. S. Potapov, A. E. Rodkina and B. N. Sadovskii, Measure of Noncompactness and Condensing Operators, Birkhäuser Verlag, Basel, 1992. https://doi.org/10.1007/978-3-0348-5727-7

A. Ambrosetti, Un teorema di esistenza per le equazioni differentiali negli spazi di Banach, Rend. Sem. Mat. Padove 39 (1967), 349-361.

J. M. Ayerbe Toledano, T. Domínguez Benavides and G. López Acedo, Measures of Noncompactness in Metric Fixed Point Theory, Birkhäuser, Basel, 1997. https://doi.org/10.1007/978-3-0348-8920-9_3

J. Banas and M. Lecko, Solvability of infinite systems of differential equations in Banach sequence spaces, J. Comput. Appl. Math. 137 (2001), 363-375. https://doi.org/10.1016/S0377-0427(00)00708-1

G. Beer, On the compactness theorem for sequences of closed sets, Math. Balkanica (N.S.) 16 (2002), Fasc. 1-4.

B. Berckmoes, On the Hausdorff measure of noncompactness for the parameterized Prokhorov metric, J. Inequal. Appl. 2016, 2016:215. https://doi.org/10.1186/s13660-016-1151-8

A. Boccuto and X. Dimitriou, Ascoli-type theorems in the cone metric space setting, J. Inequal. Appl. 2014, 2014:420. https://doi.org/10.1186/1029-242x-2014-420

Y. Cherruault and G. Mora, Optimisation Globale. Théorie des Courbes α-denses, Económica, Paris, 2005.

T. Domínguez, Set-contractions and ball-contractions in some classes of spaces, Proc. Amer. Math. Soc. 136 (1988), 131-140.

G. García, Solvability of initial value problems with fractional order differential equations in Banach spaces by α-dense curves, Fract. Calc. Appl. 20 (2017), 646-661. https://doi.org/10.1515/fca-2017-0034

G. García, Existence of solutions for infinite systems of ordinary differential equations by densifiability techniques, Filomat, to appear.

G. García and G. Mora, A fixed point result in Banach algebras based on the degree of nondensifiability and applications to quadratic integral equations, J. Math. Anal. Appl. 472 (2019), 1220-1235. https://doi.org/10.1016/j.jmaa.2018.11.073

G. García and G. Mora, The degree of convex nondensifiability in Banach spaces, J. Convex Anal. 22 (2015), 871-888.

H. P. Heinz, Theorems of Ascoli type involving measures of noncompactness, Nonlinear Anal. 5 (1981), 277-286. https://doi.org/10.1016/0362-546X(81)90032-8

K. Deimling, Ordinary Differential Equations in Banach Spaces, Springer-Verlag, Berlin Heidelberg, 1977. https://doi.org/10.1007/BFb0091636

R. H. Martin, Nonlinear Operators and Differential Equations in Banach Spaces, John Wiley and Sons, USA, 1976.

G. Mora, The Peano curves as limit of α-dense curves, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 9 (2005), 23-28.

G. Mora and Y. Cherruault, Characterization and generation of α-dense curves, Comput. Math. Appl. 33 (1997), 83-91. https://doi.org/10.1016/S0898-1221(97)00067-9

G. Mora and J. A. Mira, Alpha-dense curves in infinite dimensional spaces, Inter. J. of Pure and App. Mathematics 5 (2003), 437-449.

G. Mora and D. A. Redtwitz, Densifiable metric spaces, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 105 (2011), 71-83. https://doi.org/10.1007/s13398-011-0005-y

S. A Mohiuddine, H. M. Srivastava and A. Alotaibi, Application of measures of noncompactness to the infinite system of second-order differential equations in $ell_{p}$ spaces, Adv. Difference Equ. (2016) 2016:317. https://doi.org/10.1186/s13662-016-1016-y

M. Mursaleen, Application of measure of noncompactness to infinite systems of differential equations, Canad. Math. Bull. 56 (2013), 388-394. https://doi.org/10.4153/CMB-2011-170-7

R. D. Nussbaum, A generalization of the Ascoli theorem and an application to functional differential equations, J. Math. Anal. Appl. 35 (1971), 600-610. https://doi.org/10.1016/0022-247X(71)90207-1

L. Olszowy, Solvability of infinite systems of singular integral equations in Fréchet space of continuous functions, Comput. Math. Appl. 59 (2010), 2794-2801. https://doi.org/10.1016/j.camwa.2010.01.049

B. Przeradzki, The existence of bounded solutions for differential equations in Hilbert spaces Ann. Polon. Math. LVI (1992), 103-121. https://doi.org/10.4064/ap-56-2-103-121

H. Sagan, Space-filling Curves, Springer-Verlag, New York, 1994. https://doi.org/10.1007/978-1-4612-0871-6

S. Schwabik and Y. Guoju, Topics in Banach spaces integration, Series in Real Analysis 10, World Scientific, Singapore 2005. https://doi.org/10.1142/5905

M. Väth, Volterra and integral equations of vector functions, Chapman & Hall Pure and Applied Mathematics, New York-Basel, 2000.

S. Willard, General Topology, Dover Pub. Inc. 2004.

[-]

This item appears in the following Collection(s)

Show full item record