- -

A quantitative version of the Arzelà-Ascoli theorem based on the degree of nondensifiability and applications

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A quantitative version of the Arzelà-Ascoli theorem based on the degree of nondensifiability and applications

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author García, G. es_ES
dc.date.accessioned 2019-04-04T10:20:47Z
dc.date.available 2019-04-04T10:20:47Z
dc.date.issued 2019-04-01
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/118976
dc.description.abstract [EN] We present a novel result that, in a certain sense, generalizes the Arzelà-Ascoli theorem. Our main tool will be the so called degree of nondensifiability, which is not a measure of noncompactness but canbe used as an alternative tool in certain fixed problems where such measures do not work out. To justify our results, we analyze the existence of continuous solutions of certain Volterra integral equations defined by vector valued functions. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof Applied General Topology
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Arzelà-Ascoli theorem es_ES
dc.subject Degree of nondensifiability es_ES
dc.subject α-dense curves es_ES
dc.subject Measures of noncompactness es_ES
dc.subject Volterra integral equations es_ES
dc.title A quantitative version of the Arzelà-Ascoli theorem based on the degree of nondensifiability and applications es_ES
dc.type Artículo es_ES
dc.date.updated 2019-04-04T06:29:52Z
dc.identifier.doi 10.4995/agt.2019.10930
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation García, G. (2019). A quantitative version of the Arzelà-Ascoli theorem based on the degree of nondensifiability and applications. Applied General Topology. 20(1):265-279. https://doi.org/10.4995/agt.2019.10930 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2019.10930 es_ES
dc.description.upvformatpinicio 265 es_ES
dc.description.upvformatpfin 279 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20
dc.description.issue 1
dc.identifier.eissn 1989-4147
dc.description.references R. R. Akhmerov, M. I. Kamenskii, A. S. Potapov, A. E. Rodkina and B. N. Sadovskii, Measure of Noncompactness and Condensing Operators, Birkhäuser Verlag, Basel, 1992. https://doi.org/10.1007/978-3-0348-5727-7 es_ES
dc.description.references A. Ambrosetti, Un teorema di esistenza per le equazioni differentiali negli spazi di Banach, Rend. Sem. Mat. Padove 39 (1967), 349-361. es_ES
dc.description.references J. M. Ayerbe Toledano, T. Domínguez Benavides and G. López Acedo, Measures of Noncompactness in Metric Fixed Point Theory, Birkhäuser, Basel, 1997. https://doi.org/10.1007/978-3-0348-8920-9_3 es_ES
dc.description.references J. Banas and M. Lecko, Solvability of infinite systems of differential equations in Banach sequence spaces, J. Comput. Appl. Math. 137 (2001), 363-375. https://doi.org/10.1016/S0377-0427(00)00708-1 es_ES
dc.description.references G. Beer, On the compactness theorem for sequences of closed sets, Math. Balkanica (N.S.) 16 (2002), Fasc. 1-4. es_ES
dc.description.references B. Berckmoes, On the Hausdorff measure of noncompactness for the parameterized Prokhorov metric, J. Inequal. Appl. 2016, 2016:215. https://doi.org/10.1186/s13660-016-1151-8 es_ES
dc.description.references A. Boccuto and X. Dimitriou, Ascoli-type theorems in the cone metric space setting, J. Inequal. Appl. 2014, 2014:420. https://doi.org/10.1186/1029-242x-2014-420 es_ES
dc.description.references Y. Cherruault and G. Mora, Optimisation Globale. Théorie des Courbes α-denses, Económica, Paris, 2005. es_ES
dc.description.references T. Domínguez, Set-contractions and ball-contractions in some classes of spaces, Proc. Amer. Math. Soc. 136 (1988), 131-140. es_ES
dc.description.references G. García, Solvability of initial value problems with fractional order differential equations in Banach spaces by α-dense curves, Fract. Calc. Appl. 20 (2017), 646-661. https://doi.org/10.1515/fca-2017-0034 es_ES
dc.description.references G. García, Existence of solutions for infinite systems of ordinary differential equations by densifiability techniques, Filomat, to appear. es_ES
dc.description.references G. García and G. Mora, A fixed point result in Banach algebras based on the degree of nondensifiability and applications to quadratic integral equations, J. Math. Anal. Appl. 472 (2019), 1220-1235. https://doi.org/10.1016/j.jmaa.2018.11.073 es_ES
dc.description.references G. García and G. Mora, The degree of convex nondensifiability in Banach spaces, J. Convex Anal. 22 (2015), 871-888. es_ES
dc.description.references H. P. Heinz, Theorems of Ascoli type involving measures of noncompactness, Nonlinear Anal. 5 (1981), 277-286. https://doi.org/10.1016/0362-546X(81)90032-8 es_ES
dc.description.references K. Deimling, Ordinary Differential Equations in Banach Spaces, Springer-Verlag, Berlin Heidelberg, 1977. https://doi.org/10.1007/BFb0091636 es_ES
dc.description.references R. H. Martin, Nonlinear Operators and Differential Equations in Banach Spaces, John Wiley and Sons, USA, 1976. es_ES
dc.description.references G. Mora, The Peano curves as limit of α-dense curves, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 9 (2005), 23-28. es_ES
dc.description.references G. Mora and Y. Cherruault, Characterization and generation of α-dense curves, Comput. Math. Appl. 33 (1997), 83-91. https://doi.org/10.1016/S0898-1221(97)00067-9 es_ES
dc.description.references G. Mora and J. A. Mira, Alpha-dense curves in infinite dimensional spaces, Inter. J. of Pure and App. Mathematics 5 (2003), 437-449. es_ES
dc.description.references G. Mora and D. A. Redtwitz, Densifiable metric spaces, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 105 (2011), 71-83. https://doi.org/10.1007/s13398-011-0005-y es_ES
dc.description.references S. A Mohiuddine, H. M. Srivastava and A. Alotaibi, Application of measures of noncompactness to the infinite system of second-order differential equations in $ell_{p}$ spaces, Adv. Difference Equ. (2016) 2016:317. https://doi.org/10.1186/s13662-016-1016-y es_ES
dc.description.references M. Mursaleen, Application of measure of noncompactness to infinite systems of differential equations, Canad. Math. Bull. 56 (2013), 388-394. https://doi.org/10.4153/CMB-2011-170-7 es_ES
dc.description.references R. D. Nussbaum, A generalization of the Ascoli theorem and an application to functional differential equations, J. Math. Anal. Appl. 35 (1971), 600-610. https://doi.org/10.1016/0022-247X(71)90207-1 es_ES
dc.description.references L. Olszowy, Solvability of infinite systems of singular integral equations in Fréchet space of continuous functions, Comput. Math. Appl. 59 (2010), 2794-2801. https://doi.org/10.1016/j.camwa.2010.01.049 es_ES
dc.description.references B. Przeradzki, The existence of bounded solutions for differential equations in Hilbert spaces Ann. Polon. Math. LVI (1992), 103-121. https://doi.org/10.4064/ap-56-2-103-121 es_ES
dc.description.references H. Sagan, Space-filling Curves, Springer-Verlag, New York, 1994. https://doi.org/10.1007/978-1-4612-0871-6 es_ES
dc.description.references S. Schwabik and Y. Guoju, Topics in Banach spaces integration, Series in Real Analysis 10, World Scientific, Singapore 2005. https://doi.org/10.1142/5905 es_ES
dc.description.references M. Väth, Volterra and integral equations of vector functions, Chapman & Hall Pure and Applied Mathematics, New York-Basel, 2000. es_ES
dc.description.references S. Willard, General Topology, Dover Pub. Inc. 2004. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem