- -

Viability of using wind turbines for electricity generation in electric vehicles

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Viability of using wind turbines for electricity generation in electric vehicles

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rubio, Francisco es_ES
dc.contributor.author Llopis-Albert, Carlos es_ES
dc.date.accessioned 2019-05-20T10:34:26Z
dc.date.available 2019-05-20T10:34:26Z
dc.date.issued 2019-05-20
dc.identifier.uri http://hdl.handle.net/10251/120732
dc.description.abstract [EN] This paper presents a feasibility study of applying a fluid energy recovery system by means of wind turbines for charging batteries of electric vehicles. This is because the main disadvantage of electric vehicles with regard to conventional fuel automobiles is the scarce capacity of storing sufficient energy to run long distances. This can be carried out by recovering a percentage of the energy used to overcome the aerodynamic drag of the vehicle. This work analysis different case studies, with different driving modes, to quantify the theoretical energy recovered from the vehicle aerodynamics. Results have shown the theoretical possibility to implement this technology in actual electric vehicles. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof Multidisciplinary Journal for Education, Social and Technological Sciences
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Electric vehicles es_ES
dc.subject Wind turbines es_ES
dc.subject Energy recovery es_ES
dc.subject Aerodynamics es_ES
dc.subject Battery charging es_ES
dc.title Viability of using wind turbines for electricity generation in electric vehicles es_ES
dc.type Artículo es_ES
dc.date.updated 2019-05-20T09:57:05Z
dc.identifier.doi 10.4995/muse.2019.11743
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Rubio, F.; Llopis-Albert, C. (2019). Viability of using wind turbines for electricity generation in electric vehicles. Multidisciplinary Journal for Education, Social and Technological Sciences. 6(1):115-126. https://doi.org/10.4995/muse.2019.11743 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/muse.2019.11743 es_ES
dc.description.upvformatpinicio 115 es_ES
dc.description.upvformatpfin 126 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6
dc.description.issue 1
dc.identifier.eissn 2341-2593
dc.description.references Bangi, V.K.T., Chaudhary, Y.; Guduru, R.K.; Aung, K.T., Reddy, G.N. (2017). Preliminary investigation on generation of electricity using micro wind turbines placed on a car. International Journal of Renewable Energy Development, 6(1), pp. 75-81. https://doi.org/10.14710/ijred.6.1.75-81 es_ES
dc.description.references Ferdous, S.M, Salehin, S, Bin Khaled, W. (2011). Electric Vehicle with Charging Facility in Motion using Wind Energy. World Renewable Energy Congress 2011 - Sweden Sustainable Transport (ST), 8-11 May 2011, Linköping, Sweden. https://doi.org/10.3384/ecp110573629 es_ES
dc.description.references Llopis-Albert, C., Rubio, F., Valero, F., (2019). Fuzzy-set qualitative comparative analysis applied to the design of a network flow of automated guided vehicles for improving business productivity. Journal of Business Research, https://doi.org/10.1016/j.jbusres.2018.12.076 es_ES
dc.description.references Llopis-Albert, C. Rubio, F., Valero, F. (2018). Designing Efficient Material Handling Systems Via Automated Guided Vehicles (AGVs). Multidisciplinary Journal for Education, Social and Technological Sciences, 5(2), 97-105. https://doi.org/10.4995/muse.2018.10722 es_ES
dc.description.references Llopis-Albert, C., Merigó, J.M., Xu, Y.J. (2016). A coupled stochastic inverse/sharp interface seawater intrusion approach for coastal aquifers under groundwater parameter uncertainty. Journal of Hydrology 540, 774-783. https://doi.org/10.1016/j.jhydrol.2016.06.065 es_ES
dc.description.references Llopis-Albert, C. Rubio, F., Valero, F. (2018a). Optimization approaches for robot trajectory planning. Multidisciplinary Journal for Education 5(1), 1-16. https://doi.org/10.4995/muse.2018.9867 es_ES
dc.description.references Llopis-Albert, C., Rubio, F., Valero, F. (2015). Improving productivity using a multi-objective optimization of robotic trajectory planning. Journal of Business Research 68, 1429-1431. https://doi.org/10.1016/j.jbusres.2015.01.027 es_ES
dc.description.references Llopis-Albert, C., Pulido-Velazquez, D. (2015). Using MODFLOW code to approach transient hydraulic head with a sharp-interface solution. Hydrological processes 29(8), 2052-2064. https://doi.org/10.1002/hyp.10354 es_ES
dc.description.references Llopis-Albert, C., Capilla, J.E. (2010). Stochastic Simulation of Non-Gaussian 3D Conductivity Fields in a Fractured Medium with Multiple Statistical Populations: Case Study. Journal of Hydrologic Engineering 15(7), 554-566. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000214 es_ES
dc.description.references Rubio, F., Llopis-Albert, C., Valero, F., Besa, A.J. (2019). A new approach to the kinematic modeling of a three-dimensional car-like robot with differential drive using computational mechanics. Advances in Mechanical Engineering, https://doi.org/10.1177/1687814019825907 es_ES
dc.description.references Rubio, F., Valero, F., Llopis-Albert, C. (2019a). A review of mobile robots: Concepts, methods, theoretical framework, and applications. International Journal of Advanced Robotic Systems, 16(2). es_ES
dc.description.references https://doi.org/10.1177/1729881419839596 es_ES
dc.description.references Rubio, F., Llopis-Albert, C., Valero, F., Suñer, J.L. (2016). Industrial robot efficient trajectory generation without collision through the evolution of the optimal trajectory. Robotics and Autonomous Systems 86, 106-112. https://doi.org/10.1016/j.robot.2016.09.008 es_ES
dc.description.references Rubio, F., Llopis-Albert, C., Valero, F., Suñer, J.L. (2015). Assembly line productivity assessment by comparing optimization-simulation algorithms of trajectory planning for industrial robots. Mathematical Problems in Engineering, vol. 2015, Article ID 931048, 10 pages, 2015. https://doi.org/10.1155/2015/931048 es_ES
dc.description.references Valero, F., Rubio, F., Llopis-Albert, C. (2019). Assessment of the Effect of Energy Consumption on Trajectory Improvement for a Car-like Robot. Robotica, 1-12. https://doi.org/10.1017/S0263574719000407 es_ES
dc.description.references Valero, F., Rubio, F., Llopis-Albert, C., Cuadrado, J.I. (2017). Influence of the Friction Coefficient on the Trajectory Performance for a Car-Like Robot. Mathematical Problems in Engineering, vol. 2017, Article ID 4562647, 9 pages. https://doi.org/10.1155/2017/4562647 es_ES
dc.description.references Wen-Long Yao, A. and Chiu, C.-H (2015). Development of a Wind Power System on Trucks. Universal Journal of Mechanical Engineering, 3(5), pp. 151-163. https://doi.org/10.13189/ujme.2015.030501 es_ES
dc.description.references Zheng, X., Lin, H., Liu, Z., Li, D., Llopis-Albert, C., Zeng, S (2018). Manufacturing Decisions and Government Subsidies for Electric Vehicles in China: A Maximal Social Welfare Perspective. Sustainability, 10(3), 672. https://doi.org/10.3390/su10030672 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem