- -

Semilocal convergence of a Secant-type method under weak Lipschitz conditions in Banach spaces

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Semilocal convergence of a Secant-type method under weak Lipschitz conditions in Banach spaces

Show full item record

Kumar, A.; Gupta, D.; Martínez Molada, E.; Singh, S. (2018). Semilocal convergence of a Secant-type method under weak Lipschitz conditions in Banach spaces. Journal of Computational and Applied Mathematics. 330:732-741. https://doi.org/10.1016/j.cam.2017.02.042

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/121424

Files in this item

Item Metadata

Title: Semilocal convergence of a Secant-type method under weak Lipschitz conditions in Banach spaces
Author:
UPV Unit: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Embargo end date: 2020-03-01
Abstract:
[EN] The semilocal convergence of double step Secant method to approximate a locally unique solution of a nonlinear equation is described in Banach space setting. Majorizing sequences are used under the assumption that the ...[+]
Subjects: Semilocal convergence , Double step Secant method , Divided differences , Majorizing sequences , Error bounds , Efficiency index
Copyrigths: Embargado
Source:
Journal of Computational and Applied Mathematics. (issn: 0377-0427 )
DOI: 10.1016/j.cam.2017.02.042
Publisher:
Elsevier
Publisher version: http://doi.org/10.1016/j.cam.2017.02.042
Thanks:
This work was supported in part by the project of Generalitat Valenciana, Prometeo/2016/089, and the project MTM2014-52016-C2-2-P of the Spanish Ministry of Science and Innovation.
Type: Artículo

This item appears in the following Collection(s)

Show full item record