Mostrar el registro sencillo del ítem
dc.contributor.author | Kumar, A. | es_ES |
dc.contributor.author | Gupta, D.K. | es_ES |
dc.contributor.author | Martínez Molada, Eulalia | es_ES |
dc.contributor.author | Singh, Sukhjit | es_ES |
dc.date.accessioned | 2019-06-01T20:02:06Z | |
dc.date.available | 2019-06-01T20:02:06Z | |
dc.date.issued | 2018 | es_ES |
dc.identifier.issn | 0377-0427 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/121424 | |
dc.description.abstract | [EN] The semilocal convergence of double step Secant method to approximate a locally unique solution of a nonlinear equation is described in Banach space setting. Majorizing sequences are used under the assumption that the first-order divided differences of the involved operator satisfy the weaker Lipschitz and the center-Lipschitz continuity conditions. A theorem is established for the existence-uniqueness region along with the estimation of error bounds for the solution. Our work improves the results derived in Ren and Argyros (2015) in more stringent Lipschitz and center Lipschitz conditions and gives finer majorizing sequences. Also, an example is worked out where the conditions of Ren and Argyros (2015) fail but our's work. Numerical examples including nonlinear elliptic differential equations and integral equations are worked out. It is found that our conditions enlarge the convergence domain of the solution. Finally, taking a nonlinear system of in equations, the Efficiency Index (EI) and the Computational Efficiency Index (CEI) of double step Secant method are computed and its comparison with respect to other similar existing iterative methods are summarized in the tabular forms. (C) 2017 Elsevier B.V. All rights reserved. | es_ES |
dc.description.sponsorship | This work was supported in part by the project of Generalitat Valenciana, Prometeo/2016/089, and the project MTM2014-52016-C2-2-P of the Spanish Ministry of Science and Innovation. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Journal of Computational and Applied Mathematics | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Semilocal convergence | es_ES |
dc.subject | Double step Secant method | es_ES |
dc.subject | Divided differences | es_ES |
dc.subject | Majorizing sequences | es_ES |
dc.subject | Error bounds | es_ES |
dc.subject | Efficiency index | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Semilocal convergence of a Secant-type method under weak Lipschitz conditions in Banach spaces | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.cam.2017.02.042 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F089/ES/Resolución de ecuaciones y sistemas no lineales mediante técnicas iterativas: análisis dinámico y aplicaciones/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2014-52016-C2-2-P/ES/DISEÑO DE METODOS ITERATIVOS EFICIENTES PARA RESOLVER PROBLEMAS NO LINEALES: CONVERGENCIA, COMPORTAMIENTO DINAMICO Y APLICACIONES. ECUACIONES MATRICIALES./ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Kumar, A.; Gupta, D.; Martínez Molada, E.; Singh, S. (2018). Semilocal convergence of a Secant-type method under weak Lipschitz conditions in Banach spaces. Journal of Computational and Applied Mathematics. 330:732-741. https://doi.org/10.1016/j.cam.2017.02.042 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1016/j.cam.2017.02.042 | es_ES |
dc.description.upvformatpinicio | 732 | es_ES |
dc.description.upvformatpfin | 741 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 330 | es_ES |
dc.relation.pasarela | S\368267 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Economía y Empresa | es_ES |