Mostrar el registro completo del ítem
Kumar, A.; Gupta, D.; Martínez Molada, E.; Singh, S. (2018). Semilocal convergence of a Secant-type method under weak Lipschitz conditions in Banach spaces. Journal of Computational and Applied Mathematics. 330:732-741. https://doi.org/10.1016/j.cam.2017.02.042
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/121424
Título: | Semilocal convergence of a Secant-type method under weak Lipschitz conditions in Banach spaces | |
Autor: | Kumar, A. Gupta, D.K. Singh, Sukhjit | |
Entidad UPV: |
|
|
Fecha difusión: |
|
|
Resumen: |
[EN] The semilocal convergence of double step Secant method to approximate a locally unique solution of a nonlinear equation is described in Banach space setting. Majorizing sequences are used under the assumption that the ...[+]
|
|
Palabras clave: |
|
|
Derechos de uso: | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | |
Fuente: |
|
|
DOI: |
|
|
Editorial: |
|
|
Versión del editor: | http://doi.org/10.1016/j.cam.2017.02.042 | |
Código del Proyecto: |
|
|
Agradecimientos: |
|
|
Tipo: |
|