- -

Metodología de programación dinámica aproximada para control óptimo basada en datos

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Metodología de programación dinámica aproximada para control óptimo basada en datos

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Díaz, Henry es_ES
dc.contributor.author Armesto, Leopoldo es_ES
dc.contributor.author Sala, Antonio es_ES
dc.date.accessioned 2019-06-17T09:44:37Z
dc.date.available 2019-06-17T09:44:37Z
dc.date.issued 2019-06-12
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/122339
dc.description.abstract [EN] In this article, we present a methodology for learning data-based approximately optimal controllers, within the context of learning and approximate dynamic programming. There are previous solutions in dynamic programming that use linear programming in discrete state space, but cannot be applied directly to continuous space. The objective of the methodology is to calculate data-based optimal controllers for continuous state space, these controllers are obtained by a lower estimation of the accumulated cost through functional approximators with linear parameterization. This is solved non-iteratively with linear programming, but it requires to provide appropriate conditions for regressor regularization and to introduce a cost of leaving the region with valid data, in order to obtain satisfactory results (avoiding unrestricted or poorly conditioned solutions). es_ES
dc.description.abstract [ES] En este artículo se presenta una metodología para el aprendizaje de controladores óptimos basados en datos, en el contexto de la programación dinámica aproximada. Existen soluciones previas en programación dinámica que utilizan programación lineal en espacios de estado discretos, pero que no se pueden aplicar directamente a espacios continuos. El objetivo de la metodología es calcular controladores óptimos para espacios de estados continuos, basados en datos, obtenidos mediante una estimación inferior del coste acumulado a través de aproximadores funcionales con parametrización lineal. Esto se resuelve de forma no iterativa con programación lineal, pero requiere proporcionar las condiciones adecuadas de regularización de regresores e introducir un coste de abandono de la región con datos válidos, con el fin de obtener resultados satisfactorios (evitando soluciones no acotadas o mal condicionadas). es_ES
dc.description.sponsorship Agradecemos al Ministerio de Economía de España, la Unión Europea DPI2016-81002-R (AEI/FEDER, UE), y al Gobierno de Ecuador (Beca SENESCYT) la financiación recibida para la línea de investigación objeto de este trabajo. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof Revista Iberoamericana de Automática e Informática.
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Control inteligente es_ES
dc.subject Programación Dinámica Aproximada es_ES
dc.subject Aprendizaje Neuronal es_ES
dc.subject Control Óptimo es_ES
dc.subject Intelligent Control es_ES
dc.subject Approximate Dynamic Programming es_ES
dc.subject Neural Learning es_ES
dc.subject Optimal Control es_ES
dc.title Metodología de programación dinámica aproximada para control óptimo basada en datos es_ES
dc.title.alternative Approximate Dynamic Programming Methodology for Data-based Optimal Controllers es_ES
dc.type Artículo es_ES
dc.date.updated 2019-06-17T08:10:37Z
dc.identifier.doi 10.4995/riai.2019.10379
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DPI2016-81002-R/ES/CONTROL AVANZADO Y APRENDIZAJE DE ROBOTS EN OPERACIONES DE TRANSPORTE/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Automática e Informática Industrial - Institut Universitari d'Automàtica i Informàtica Industrial es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Diseño para la Fabricación y Producción Automatizada - Institut de Disseny per a la Fabricació i Producció Automatitzada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica es_ES
dc.description.bibliographicCitation Díaz, H.; Armesto, L.; Sala, A. (2019). Metodología de programación dinámica aproximada para control óptimo basada en datos. Revista Iberoamericana de Automática e Informática. 16(3):273-283. https://doi.org/10.4995/riai.2019.10379 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/riai.2019.10379 es_ES
dc.description.upvformatpinicio 273 es_ES
dc.description.upvformatpfin 283 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 16
dc.description.issue 3
dc.identifier.eissn 1697-7920
dc.contributor.funder Secretaría de Educación Superior, Ciencia, Tecnología e Innovación, Ecuador
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Albertos, P., Sala, A., 2006. Multivariable control systems: an engineering approach.Springer. es_ES
dc.description.references Allgower, F., Zheng, A., 2012. Nonlinear model predictive control. Vol. 26.Birkhauser. es_ES
dc.description.references Antos, A., Szepesvári, C., Munos, R., 2008. Learning near-optimal policies with bellman-residual minimization based fitted policy iteration and a single sample path. Machine Learning 71 (1), 89-129. https://doi.org/10.1007/s10994-007-5038-2 es_ES
dc.description.references Ariño, C., Pérez, E., Querol, A., Sala, A., 2014. Model predictive control for discrete fuzzy systems via iterative quadratic programming. In: Fuzzy Systems (FUZZ-IEEE), 2014 IEEE International Conference on. IEEE, pp. 2288- 293. https://doi.org/10.1109/FUZZ-IEEE.2014.6891633 es_ES
dc.description.references Ariño, C., Pérez, E., Sala, A., 2010. Guaranteed cost control analysis and iterative design for constrained takagi-sugeno systems. Engineering Applications of Artificial Intelligence 23 (8), 1420-1427. https://doi.org/10.1016/j.engappai.2010.03.004 es_ES
dc.description.references Armesto, L., Girbés, V., Sala, A., Zima, M.,Smidl, V., 2015. Duality-based non- linear quadratic control: Application to mobile robot trajectory-following. IEEE Transactions on Control Systems Technology 23 (4), 1494-1504. https://doi.org/10.1109/TCST.2014.2377631 es_ES
dc.description.references Busoniu, L., Babuska, R., De Schutter, B., Ernst, D., 2010. Reinforcement learning and dynamic programming using function approximators. Vol. 39. CRCpress. es_ES
dc.description.references Camacho, E. F., Bordons, C., 2010. Control predictivo: Pasado, presente y futuro.Revista Iberoamericana de Automática e Informática Industrial 1 (3),5-28. es_ES
dc.description.references Condon, A., 1992. The complexity of stochastic games. Information and Computation 96 (2), 203 - 224. https://doi.org/10.1016/0890-5401(92)90048-K es_ES
dc.description.references Díaz, H., Armesto, L., Sala, A., 2018. Fitted q-function control methodology based on takagi-sugeno systems. IEEE Transactions on Control Systems Technology, 1-12. https://doi.org/10.1109/TCST.2018.2885689 es_ES
dc.description.references De Farias, D. P., Van Roy, B., 2003. The linear programming approach to approximate dynamic programming. Operations research 51 (6), 850-865. https://doi.org/10.1287/opre.51.6.850.24925 es_ES
dc.description.references Deisenroth, M. P., Neumann, G., Peters, J., et al., 2013. A survey on policy search for robotics. Foundations and Trends in Robotics 2 (1-2), 1-142. https://doi.org/10.1561/2300000021 es_ES
dc.description.references Denardo, E. V., 1970. On linear programming in a markov decision problem. Management Science 16 (5), 281-288. https://doi.org/10.1287/mnsc.16.5.281 es_ES
dc.description.references Duarte-Mermoud, M., Milla, F., 2018. Estabilizador de sistemas de potencia usando control predictivo basado en modelo. Revista Iberoamericana de Automática e Informática industrial 0 (0). https://doi.org/10.4995/riai.2018.10056 es_ES
dc.description.references Fairbank, M., Alonso, E., June 2012. The divergence of reinforcement learning algorithms with value-iteration and function approximation. In: The 2012 International Joint Conference on Neural Networks (IJCNN). pp. 1-8. https://doi.org/10.1109/IJCNN.2012.6252792 es_ES
dc.description.references Gil, R. V., Páez, D. G., 2007. Identificación de sistemas dinámicos utilizando redes neuronales rbf. Revista iberoamericana de automática e informática industrial RIAI 4 (2), 32-42. https://doi.org/10.1016/S1697-7912(07)70207-8 es_ES
dc.description.references Grondman, I., Busoniu, L., Lopes, G. A., Babuska, R., 2012. A survey of actorcritic reinforcement learning: Standard and natural policy gradients. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 42 (6), 1291-1307. https://doi.org/10.1109/TSMCC.2012.2218595 es_ES
dc.description.references Hornik, K., Stinchcombe, M., White, H., 1989. Multilayer feedforward networks are universal approximators. Neural Networks 2 (5), 359 - 366. https://doi.org/10.1016/0893-6080(89)90020-8 es_ES
dc.description.references Kretchmar, R. M., Anderson, C. W., 1997. Comparison of CMACs and radial basis functions for local function approximators in reinforcement learning. In: Neural Networks, 1997., International Conference on. Vol. 2. IEEE, pp. 834-837. es_ES
dc.description.references Latombe, J.-C., 2012. Robot motion planning. Vol. 124. Springer es_ES
dc.description.references Lewis, F. L., Liu, D., 2013. Reinforcement learning and approximate dynamic programming for feedback control. Vol. 17. John Wiley &Sons. https://doi.org/10.1002/9781118453988 es_ES
dc.description.references Lewis, F. L., Vrabie, D., 2009. Reinforcement learning and adaptive dynamic programming for feedback control. Circuits and Systems Magazine, IEEE 9 (3), 32-50. https://doi.org/10.1109/MCAS.2009.933854 es_ES
dc.description.references Manne, A. S., 1960. Linear programming and sequential decisions. Management Science 6 (3), 259-267. https://doi.org/10.1287/mnsc.6.3.259 es_ES
dc.description.references Park, J., Sandberg, I. W., 1991. Universal approximation using radial-basisfunction networks. Neural computation 3 (2), 246-257. https://doi.org/10.1162/neco.1991.3.2.246 es_ES
dc.description.references Rohmer, E., Singh, S. P., Freese, M., 2013. V-rep: A versatile and scalable robot simulation framework. In: Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on. IEEE, pp. 1321-1326. https://doi.org/10.1109/IROS.2013.6696520 es_ES
dc.description.references Rubio, F. R., Navas, S. J., Ollero, P., Lemos, J. M., Ortega, M. G., 2018. Control Óptimo aplicado a campos de colectores solares distribuidos. Revista Iberoamericana de Automática e Informática industrial, 15(3), 327-338. doi:https://doi.org/10.4995/riai.2018.8944 es_ES
dc.description.references Santos, M., 2011. Un enfoque aplicado del control inteligente. Revista Iberoamericana de Automática e Informática Industrial RIAI 8 (4), 283-296. https://doi.org/10.1016/j.riai.2011.09.016 es_ES
dc.description.references Si, J., Barto, A. G., Powell, W. B., Wunsch, D., 2004. Handbook of Learning and Approximate Dynamic Programming (IEEE Press Series on Computational Intelligence). Wiley-IEEE Press. https://doi.org/10.1109/9780470544785 es_ES
dc.description.references Sutton, R. S., Barto, A. G., 1998. Reinforcement learning: An introduction. Vol. 1. MIT press Cambridge. es_ES
dc.description.references Yañez-Badillo, H., Tapia-Olvera, R., Aguilar-Mejía, O., Beltran-Carbajal, F., 2017. Control neuronal en línea para regulación y seguimiento de trayectorias de posición para un quadrotor. Revista Iberoamericana de Automática e Informática Industrial RIAI 14 (2), 141-151. https://doi.org/10.1016/j.riai.2017.01.001 es_ES
dc.description.references Ziogou, C., Papadopoulou, S., Georgiadis, M. C., Voutetakis, S., 2013. On-line nonlinear model predictive control of a pem fuel cell system. Journal of Process Control 23 (4), 483-492. https://doi.org/10.1016/j.jprocont.2013.01.011 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem