Albertos, P., Sala, A., 2006. Multivariable control systems: an engineering approach.Springer.
Allgower, F., Zheng, A., 2012. Nonlinear model predictive control. Vol. 26.Birkhauser.
Antos, A., Szepesvári, C., Munos, R., 2008. Learning near-optimal policies with bellman-residual minimization based fitted policy iteration and a single sample path. Machine Learning 71 (1), 89-129. https://doi.org/10.1007/s10994-007-5038-2
[+]
Albertos, P., Sala, A., 2006. Multivariable control systems: an engineering approach.Springer.
Allgower, F., Zheng, A., 2012. Nonlinear model predictive control. Vol. 26.Birkhauser.
Antos, A., Szepesvári, C., Munos, R., 2008. Learning near-optimal policies with bellman-residual minimization based fitted policy iteration and a single sample path. Machine Learning 71 (1), 89-129. https://doi.org/10.1007/s10994-007-5038-2
Ariño, C., Pérez, E., Querol, A., Sala, A., 2014. Model predictive control for discrete fuzzy systems via iterative quadratic programming. In: Fuzzy Systems (FUZZ-IEEE), 2014 IEEE International Conference on. IEEE, pp. 2288- 293. https://doi.org/10.1109/FUZZ-IEEE.2014.6891633
Ariño, C., Pérez, E., Sala, A., 2010. Guaranteed cost control analysis and iterative design for constrained takagi-sugeno systems. Engineering Applications of Artificial Intelligence 23 (8), 1420-1427. https://doi.org/10.1016/j.engappai.2010.03.004
Armesto, L., Girbés, V., Sala, A., Zima, M.,Smidl, V., 2015. Duality-based non- linear quadratic control: Application to mobile robot trajectory-following. IEEE Transactions on Control Systems Technology 23 (4), 1494-1504. https://doi.org/10.1109/TCST.2014.2377631
Busoniu, L., Babuska, R., De Schutter, B., Ernst, D., 2010. Reinforcement learning and dynamic programming using function approximators. Vol. 39. CRCpress.
Camacho, E. F., Bordons, C., 2010. Control predictivo: Pasado, presente y futuro.Revista Iberoamericana de Automática e Informática Industrial 1 (3),5-28.
Condon, A., 1992. The complexity of stochastic games. Information and Computation 96 (2), 203 - 224. https://doi.org/10.1016/0890-5401(92)90048-K
Díaz, H., Armesto, L., Sala, A., 2018. Fitted q-function control methodology based on takagi-sugeno systems. IEEE Transactions on Control Systems Technology, 1-12. https://doi.org/10.1109/TCST.2018.2885689
De Farias, D. P., Van Roy, B., 2003. The linear programming approach to approximate dynamic programming. Operations research 51 (6), 850-865. https://doi.org/10.1287/opre.51.6.850.24925
Deisenroth, M. P., Neumann, G., Peters, J., et al., 2013. A survey on policy search for robotics. Foundations and Trends in Robotics 2 (1-2), 1-142. https://doi.org/10.1561/2300000021
Denardo, E. V., 1970. On linear programming in a markov decision problem. Management Science 16 (5), 281-288. https://doi.org/10.1287/mnsc.16.5.281
Duarte-Mermoud, M., Milla, F., 2018. Estabilizador de sistemas de potencia usando control predictivo basado en modelo. Revista Iberoamericana de Automática e Informática industrial 0 (0). https://doi.org/10.4995/riai.2018.10056
Fairbank, M., Alonso, E., June 2012. The divergence of reinforcement learning algorithms with value-iteration and function approximation. In: The 2012 International Joint Conference on Neural Networks (IJCNN). pp. 1-8. https://doi.org/10.1109/IJCNN.2012.6252792
Gil, R. V., Páez, D. G., 2007. Identificación de sistemas dinámicos utilizando redes neuronales rbf. Revista iberoamericana de automática e informática industrial RIAI 4 (2), 32-42. https://doi.org/10.1016/S1697-7912(07)70207-8
Grondman, I., Busoniu, L., Lopes, G. A., Babuska, R., 2012. A survey of actorcritic reinforcement learning: Standard and natural policy gradients. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 42 (6), 1291-1307. https://doi.org/10.1109/TSMCC.2012.2218595
Hornik, K., Stinchcombe, M., White, H., 1989. Multilayer feedforward networks are universal approximators. Neural Networks 2 (5), 359 - 366. https://doi.org/10.1016/0893-6080(89)90020-8
Kretchmar, R. M., Anderson, C. W., 1997. Comparison of CMACs and radial basis functions for local function approximators in reinforcement learning. In: Neural Networks, 1997., International Conference on. Vol. 2. IEEE, pp. 834-837.
Latombe, J.-C., 2012. Robot motion planning. Vol. 124. Springer
Lewis, F. L., Liu, D., 2013. Reinforcement learning and approximate dynamic programming for feedback control. Vol. 17. John Wiley &Sons. https://doi.org/10.1002/9781118453988
Lewis, F. L., Vrabie, D., 2009. Reinforcement learning and adaptive dynamic programming for feedback control. Circuits and Systems Magazine, IEEE 9 (3), 32-50. https://doi.org/10.1109/MCAS.2009.933854
Manne, A. S., 1960. Linear programming and sequential decisions. Management Science 6 (3), 259-267. https://doi.org/10.1287/mnsc.6.3.259
Park, J., Sandberg, I. W., 1991. Universal approximation using radial-basisfunction networks. Neural computation 3 (2), 246-257. https://doi.org/10.1162/neco.1991.3.2.246
Rohmer, E., Singh, S. P., Freese, M., 2013. V-rep: A versatile and scalable robot simulation framework. In: Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on. IEEE, pp. 1321-1326. https://doi.org/10.1109/IROS.2013.6696520
Rubio, F. R., Navas, S. J., Ollero, P., Lemos, J. M., Ortega, M. G., 2018. Control Óptimo aplicado a campos de colectores solares distribuidos. Revista Iberoamericana de Automática e Informática industrial, 15(3), 327-338. doi:https://doi.org/10.4995/riai.2018.8944
Santos, M., 2011. Un enfoque aplicado del control inteligente. Revista Iberoamericana de Automática e Informática Industrial RIAI 8 (4), 283-296. https://doi.org/10.1016/j.riai.2011.09.016
Si, J., Barto, A. G., Powell, W. B., Wunsch, D., 2004. Handbook of Learning and Approximate Dynamic Programming (IEEE Press Series on Computational Intelligence). Wiley-IEEE Press. https://doi.org/10.1109/9780470544785
Sutton, R. S., Barto, A. G., 1998. Reinforcement learning: An introduction. Vol. 1. MIT press Cambridge.
Yañez-Badillo, H., Tapia-Olvera, R., Aguilar-Mejía, O., Beltran-Carbajal, F., 2017. Control neuronal en línea para regulación y seguimiento de trayectorias de posición para un quadrotor. Revista Iberoamericana de Automática e Informática Industrial RIAI 14 (2), 141-151. https://doi.org/10.1016/j.riai.2017.01.001
Ziogou, C., Papadopoulou, S., Georgiadis, M. C., Voutetakis, S., 2013. On-line nonlinear model predictive control of a pem fuel cell system. Journal of Process Control 23 (4), 483-492. https://doi.org/10.1016/j.jprocont.2013.01.011
[-]