- -

Redesign and characterization of a single-cylinder optical research engine to allow full optical access and fast cleaning during combustion studies

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Redesign and characterization of a single-cylinder optical research engine to allow full optical access and fast cleaning during combustion studies

Mostrar el registro completo del ítem

Benajes, J.; Pastor, JV.; García Martínez, A.; Monsalve-Serrano, J. (2018). Redesign and characterization of a single-cylinder optical research engine to allow full optical access and fast cleaning during combustion studies. Experimental Techniques. 42(1):55-68. https://doi.org/10.1007/s40799-017-0219-9

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/122880

Ficheros en el ítem

Metadatos del ítem

Título: Redesign and characterization of a single-cylinder optical research engine to allow full optical access and fast cleaning during combustion studies
Autor: Benajes, Jesús Pastor, José V. García Martínez, Antonio Monsalve-Serrano, Javier
Entidad UPV: Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics
Fecha difusión:
Resumen:
[EN] This work describes the update of an optical engine design with the aim of increasing its capabilities when used for combustion studies. The criteria followed to perform the optical engine redesign were: maximize the ...[+]
Palabras clave: Optical engine , Efficiency , Combustion , Swirl , Optimization
Derechos de uso: Reserva de todos los derechos
Fuente:
Experimental Techniques. (issn: 0732-8818 )
DOI: 10.1007/s40799-017-0219-9
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s40799-017-0219-9
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//ICTS-2012-06/ES/Dotación de infraestructuras científico técnicas para el Centro Integral de Mejora Energética y Medioambiental de Sistemas de Transporte (CiMeT)/
info:eu-repo/grantAgreement/MINECO//TRA2014-58870-R/ES/REDUCCION DE LAS EMISIONES DE CO2 EN VEHICULOS PARA TRANSPORTE USANDO COMBUSTION DUAL NATURAL GAS-DIESEL/
Agradecimientos:
This work has been partially funded by the Spanish Government under the project HiReCo TRA2014-58870-R. The equipment used has been partially funded by FEDER project ICTS-2012-06, framed in the operational program of unique ...[+]
Tipo: Artículo

References

Dargay J, Gately D (1999) Income’s effect on car and vehicle ownership, worldwide: 1960-2015. Transp Res A Policy Pract 33(2):101–138

European Automobile Manufacturers’ Association (2015) The automobile industry pocket guide 2014-2015. Technical report

Energy, Transport and Environment Indicators (2014) Eurostat pocketbooks. Technical report. Cat. No: KS-DK-14-001-EN-N. https://doi.org/10.2785/56625 [+]
Dargay J, Gately D (1999) Income’s effect on car and vehicle ownership, worldwide: 1960-2015. Transp Res A Policy Pract 33(2):101–138

European Automobile Manufacturers’ Association (2015) The automobile industry pocket guide 2014-2015. Technical report

Energy, Transport and Environment Indicators (2014) Eurostat pocketbooks. Technical report. Cat. No: KS-DK-14-001-EN-N. https://doi.org/10.2785/56625

Environmental Protection Agency (1999) Nitrogen Oxides (NOx), Why and how they are controlled. Technical report. Report Number: EPA-456/F-99-006R. https://www3.epa.gov/ttncatc1/dir1/fnoxdoc.pdf

Environmental European Agency (2013) Emissions of primary PM2.5 and PM10 particulate matter. Technical report. Indicator codes: CSI 003 , APE 009. https://www.eea.europa.eu/data-and-maps/indicators/emissions-of-primary-particles-and-5/assessment-3

(2009) Regulation (EC) 595/2009 of the European Parliament and of the Council of 18 June 2009 on type-approval of motor vehicles and engines with respect to emissions from heavy duty vehicles (Euro VI) and on access to vehicle repair and maintenance information and amending Regulation (EC) 715/2007 and Directive 2007/46/EC and repealing Directives 80/1269/EEC, 2005/55/EC and 2005/78/EC. Off J Eur Union L 188:1–13

Pastor JV, García-Oliver JM, García A, Micó C, Möller S (2016) Application of optical diagnostics to the quantification of soot in n-alkane flames under diesel conditions. Combust Flame 164:212–223

Desantes JM, Pastor JV, García-Oliver JM, Briceño FJ (2014) An experimental analysis on the evolution of the transient tip penetration in reacting diesel sprays. Combust Flame 161(8):2137–2150

Desantes JM, Arregle JM, Lopez JJ (2006) Scaling laws for free turbulent gas jets and diesel-like sprays. Atomization Sprays 16:443–473

Desantes JM, Torregrosa AJ, Broatch A (2001) Experiments on flow noise generation in simple exhaust geometries. Acustica 87(1):46–55

Benajes J, García A, Monsalve-Serrano J, Boronat V Achieving clean and efficient engine operation up to full load by combining optimized RCCI and dual-fuel diesel-gasoline combustion strategies. Energy Convers Manag 136:142–151

Payri R, Gimeno J, Bardi M, Plazas A (2013) Study liquid length penetration results obtained with a direct acting piezo electric injector. Appl Energy 106:152–162

Garcia A, Monsalve-Serrano J, Heuser B, Jakob M, Kremer F, Pischinger S (2016) Influence of fuel properties on fundamental spray characteristics and soot emissions using different tailor-made fuels from biomass. Energy Convers Manag 108:243–254

An H, Chung J, Lee S, Song S (2015) The effects of hydrogen addition on the auto-ignition delay of homogeneous primary reference fuel/air mixtures in a rapid compression machine. Int J Hydrog Energy 40(40):13994–14005

Payri F, Desantes JM, Pastor JV (1996) LDV measurements of the flow inside the combustion chamber of a 4-valve D.I. Diesel engine with axisymmetric piston-bowls. Exp Fluids 22(2):118–128

Benajes J, Molina S, García A, Monsalve-Serrano J, Durrett R (2014) Conceptual model description of the double injection strategy applied to the gasoline partially premixed compression ignition combustion concept with spark assistance. Appl Energy 129:1–9

Desantes JM, Lopez JJ, García JM (2007) Evaporative diesel spray modeling. Atomization Sprays 17:193–231

Battistoni M, Mariani F, Risi F, Poggiani C, Combustion CFD (2015) Modeling of a spark ignited optical access engine fueled with gasoline and ethanol. Energy Procedia 82:424–431

Benajes J, García A, Pastor JM, Monsalve-Serrano J (2016) Effects of piston bowl geometry on reactivity controlled compression ignition heat transfer and combustion losses at different engine loads. Energy 98:64–77

Benajes J, García A, Monsalve-Serrano J, Balloul I, Pradel G (2016) An assessment of the dual-mode RCCI/CDC capabilities in a EURO VI medium-duty diesel engine fueled with an intermediate ethanol-gasoline blend and biodiesel. Energy Convers Manag 123:381–391

Benajes J, Martín J, García A, Villalta D, Warey A (2015) In-cylinder soot radiation heat transfer in direct-injection diesel engines. Energy Convers Manag 106:414–427

Luján JM, Climent H, Dolz V, Moratal A, Borges-Alejo J, Soukeur Z (2016) Potential of exhaust heat recovery for intake charge heating in a diesel engine transient operation at cold conditions. Appl Therm Eng 105:501–508

Bohla T, Tiana G, Zengb W, Heb X, Roskilly A (2014) Optical investigation on diesel engine fuelled by vegetable oils. Inter Conf on Appl energy, ICAE2014. Energy Procedia 61:670–674

Bizon K, Continillo G, Lombardi S, Sementa P, Vaglieco B (2016) Independent component analysis of cycle resolved combustion images from a spark ignition optical engine. Combust Flame 163:258–269

Mancaruso E, Sequino L, Vaglieco B (2016) Analysis of the pilot injection running common rail strategies in a research diesel engine by means of infrared diagnostics and 1d model. Fuel 178:188–201

Zeng W, Sjöberg M, Reuss D, Hu Z (2016) High-speed PIV, spray, combustion luminosity, and infrared fuel-vapor imaging for probing tumble-flow-induced asymmetry of gasoline distribution in a spray-guided stratified-charge DISI engine. Proc Combust Inst 36(3):3459–3466

Catapano F, Sementa P, Vaglieco B (2016) Air-fuel mixing and combustion behavior of gasoline-ethanol blends in a GDI wall-guided turbocharged multi-cylinder optical engine. Renew Energy 96:319–332

Merola S, Tornatore C, Irimescu A, Marchitto L, Valentino G (2016) Optical diagnostics of early flame development in a DISI (direct injection spark ignition) engine fueled with n-butanol and gasoline. Energy 108:50–62

Marseglia G, Costa M, Catapano F, Sementa P, Vaglieco B (2017) Study about the link between injection strategy and knock onset in an optically accessible multi-cylinder GDI engine. Energy Convers Manag 134:1–19

Irimescu A, Merola S, Tornatore C, Valentino G (2016) Effect of coolant temperature on air-fuel mixture formation and combustion in an optical direct injection spark ignition engine fueled with gasoline and butanol. J Energy Inst 90:452–465. https://doi.org/10.1016/j.joei.2016.03.004.

Irimescu A, Merola S, Valentino G (2016) Application of an entrainment turbulent combustion model with validation based on the distribution of chemical species in an optical spark ignition engine. Appl Energy 162:908–923

Pastor JV, García-Oliver JM, García A, Pinotti M (2016) Laser induced plasma methodology for ignition control in direct injection sprays. Energy Convers Manag 120:144–156

Regan C, Chun K, Schock H (1987) Engine flow visualization using a copper vapor laser. Proc SPIE: New Dev Appl Gas Lasers 737:17–27

Le Coz J-F, Henriot S, Pinchon P (1990) An experimental and computational analysis of the flow field in a four-valve spark ignition engine-focus on cycle-resolved turbulence. SAE International in United States. https://doi.org/10.4271/900056

Catapano F, Sementa P, Vaglieco B (2013) Optical characterization of bio-ethanol injection and combustion in a small DISI engine for two wheels vehicles. Fuel 106:651–666

Bowditch F (1958) Cylinder and Piston Assembly. US Patent, App 2,919,688, 2,919,688 https://www.google.com/patents/US2919688

Pastor JV, García-Oliver JM, García A, Micó C, Durrett R (2013) A spectroscopy study of gasoline partially premixed compression ignition spark assisted combustion. Appl Energy 104:568–575

Di Iorio S.; Sementa P.; Vaglieco B. Analysis of combustion of methane and hydrogen–methane blends in small DI SI (direct injection spark ignition) engine using advanced diagnostics. Energy 2016, 108, 99–107.

Sementa P, Vaglieco B, Catapano F (2012) Thermodynamic and optical characterizations of a high performance GDI engine operating in homogeneous and stratified charge mixture conditions fueled with gasoline and bio-ethanol. Fuel 96:204–219

Richman R, Reynolds W (1984) The development of a transparent cylinder engine for piston engine fluid mechanics research. SAE International in United States. https://doi.org/10.4271/840379

Bates S (1988) A transparent engine for flow and combustion visualization studies. SAE International in United States. https://doi.org/10.4271/880520

Zhang Y, Zhang R, Rao L, Kim D, Kook S (2017) The influence of a large methyl ester on in-flame soot particle structures in a small-bore diesel engine. Fuel 194:423–435

Reuss D (2000) Cyclic variability of large-scale turbulent structures in directed and undirected IC engine flows. SAE International in United States. https://doi.org/10.4271/2000-01-0246

López JJ, García-Oliver JM, García A, Domenech V (2014) Gasoline effects on spray characteristics, mixing and auto-ignition processes in a CI engine under partially premixed combustion conditions. Appl Therm Eng 70(1):996–1006

Benajes J, García A, Domenech V, Durrett R (2013) An investigation of partially premixed compression ignition combustion using gasoline and spark assistance. Appl Therm Eng 52(2):468–477

Klein M, Eriksson L, Åslund J (2006) Compression ratio estimation based on cylinder pressure data. Control Eng. Practice 14(3):197–211

Payri F, Olmeda P, Martín J, García AA (2011) Complete 0D thermodynamic predictive model for direct injection diesel engines. Appl Energy 88(12):4632–4641

Payri F, Olmeda P, Martin J, Carreño R (2014) A new tool to perform global energy balances in DI diesel engines. SAE Int. J. Engines 7(1):2014-01-0665

Benajes J, Olmeda P, Martín J, Carreño RA (2014) New methodology for uncertainties characterization in combustion diagnosis and thermodynamic modelling. Appl Therm Eng 71:389–399

Payri F, Margot X, Gil A, Martín J (2005) Computational study of heat transfer to the walls of a DI diesel engine. SAE International in United States. https://doi.org/10.4271/2005-01-0210

Martín J (2012) Diagnóstico de la combustión en motores de Diesel de inyeccióon directa. Reverté, Barcelona, España ISBN 978-84-291-4717-9

Payri F, Galindo J, Martín J, Arnau F (2007) A Simple Model for Predicting the Trapped Mass in a DI Diesel Engine. SAE International in United States. https://doi.org/10.4271/2007-01-0494

Hohenberg G (1976) Definition und Eigenschaften des thermodynamischen Verlustwinkels von Kolbenmaschinen. Automob Ind 4:15–21

Armas O (1998) Diagnóstico experimental del proceso de combustión en motores Diesel de inyección directa. Doctoral Thesis, Universitat Politècnica de València

Berna C, Juliá JE, Escrivá A, Muñoz-Cobo JL, Pastor JV, Micó C (2017) Experimental investigation of the entrained droplet velocities in a submerged jet injected into a stagnant water pool. Exp Thermal Fluid Sci 82:32–41

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem