- -

Retinal Image Synthesis for Glaucoma Assessment using DCGAN and VAE Models

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Retinal Image Synthesis for Glaucoma Assessment using DCGAN and VAE Models

Show full item record

Díaz-Pinto, AY.; Colomer, A.; Naranjo Ornedo, V.; Morales, S.; Xu, Y.; Frangi, AF. (2019). Retinal Image Synthesis for Glaucoma Assessment using DCGAN and VAE Models. En Intelligent Data Engineering and Automated Learning – IDEAL 2018. Springer. 224-232. https://doi.org/10.1007/978-3-030-03493-1_24

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/124078

Files in this item

Item Metadata

Title: Retinal Image Synthesis for Glaucoma Assessment using DCGAN and VAE Models
Author:
UPV Unit: Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Issued date:
Abstract:
The performance of a Glaucoma assessment system is highly affected by the number of labelled images used during the training stage. However, labelled images are often scarce or costly to obtain. In this paper, we address ...[+]
Subjects: Medical imaging , Retinal Image Synthesis , Fundus Images , DCGAN , VAE
Copyrigths: Reserva de todos los derechos
ISBN: 978-3-030-03492-4
Source:
Intelligent Data Engineering and Automated Learning – IDEAL 2018.
DOI: 10.1007/978-3-030-03493-1_24
Publisher:
Springer
Publisher version: http://dx.doi.org/10.1007/978-3-030-03493-1_24
Conference name: International Conference on Intelligent Data Engineering and Automated Learning (IDEAL)
Conference place: Madrid, Spain
Conference date: Noviembre 21-23,2018
Series: Lecture Notes in Computer Science;11314
Project ID: info:eu-repo/grantAgreement/EC/H2020/732613/EU
Thanks:
We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan Xp GPU used for this research. This work was supported by the Project GALAHAD [H2020-ICT-2016-2017, 732613]
Type: Capítulo de libro Comunicación en congreso

References

Chen, X., Xu, Y., Yan, S., Wong, D.W.K., Wong, T.Y., Liu, J.: Automatic feature learning for glaucoma detection based on deep learning. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 669–677. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_80

Fiorini, S., Biasi, M.D., Ballerini, L., Trucco, E., Ruggeri, A.: Automatic generation of synthetic retinal fundus images. In: Smart Tools and Apps for Graphics - Eurographics Italian Chapter Conference. The Eurographics Association (2014)

Bonaldi, L., Menti, E., Ballerini, L., Ruggeri, A., Trucco, E.: Automatic generation of synthetic retinal fundus images: vascular network. Proc. Comput. Sci. 90(Suppl. C), 54–60 (2016) [+]
Chen, X., Xu, Y., Yan, S., Wong, D.W.K., Wong, T.Y., Liu, J.: Automatic feature learning for glaucoma detection based on deep learning. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 669–677. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_80

Fiorini, S., Biasi, M.D., Ballerini, L., Trucco, E., Ruggeri, A.: Automatic generation of synthetic retinal fundus images. In: Smart Tools and Apps for Graphics - Eurographics Italian Chapter Conference. The Eurographics Association (2014)

Bonaldi, L., Menti, E., Ballerini, L., Ruggeri, A., Trucco, E.: Automatic generation of synthetic retinal fundus images: vascular network. Proc. Comput. Sci. 90(Suppl. C), 54–60 (2016)

Costa, P., et al.: End-to-end adversarial retinal image synthesis. IEEE Trans. Med. Imaging 37(3), 781–791 (2018)

Costa, P., et al.: Towards adversarial retinal image synthesis. arXiv:1701.08974 (2017)

Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. arXiv:1312.6114 (2013)

Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv: 1511.06434 , November 2015

Köhler, T., Budai, A., Kraus, M.F., Odstrčilik, J., Michelson, G., Hornegger., J.: Automatic no-reference quality assessment for retinal fundus images using vessel segmentation. In: Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems, pp. 95–100 (2013)

Sivaswamy, J., Krishnadas, S., Joshi, G.D., Jain, M., Ujjwal, A.S.T.: Drishti-GS: retinal image dataset for optic nerve head (ONH) segmentation. In: 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), pp. 53–56 (2014)

Zhang, Z., et al.: ORIGA-light: an online retinal fundus image database for glaucoma analysis and research. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, pp. 3065–3068, August 2010

Medina-Mesa, E., et al.: Estimating the amount of hemoglobin in the neuroretinal rim using color images and OCT. Curr. Eye Res. 41(6), 798–805 (2015)

sjchoi86: sjchoi86-HRF Database (2017). https://github.com/sjchoi86/retina_dataset/tree/master/dataset . Accessed 02 July 2017

Chollet, F., et al.: Keras (2015). https://github.com/fchollet/keras . Accessed 21 May 2017

Theis, L., van den Oord, A., Bethge, M.: A note on the evaluation of generative models. In: International Conference on Learning Representations, April 2016

Morales, S., Naranjo, V., Navea, A., Alcañiz, M.: Computer-aided diagnosis software for hypertensive risk determination through fundus image processing. IEEE J. Biomed. Health Inform. 18(6), 1757–1763 (2014)

White, T.: Sampling generative networks. arXiv:1609.04468 (2016)

Fu, H., Cheng, J., Xu, Y., Wong, D.W.K., Liu, J., Cao, X.: Joint optic disc and cup segmentation based on multi-label deep network and polar transformation. IEEE Trans. Med. Imaging (2018)

[-]

This item appears in the following Collection(s)

Show full item record