Chen, X., Xu, Y., Yan, S., Wong, D.W.K., Wong, T.Y., Liu, J.: Automatic feature learning for glaucoma detection based on deep learning. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 669–677. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_80
Fiorini, S., Biasi, M.D., Ballerini, L., Trucco, E., Ruggeri, A.: Automatic generation of synthetic retinal fundus images. In: Smart Tools and Apps for Graphics - Eurographics Italian Chapter Conference. The Eurographics Association (2014)
Bonaldi, L., Menti, E., Ballerini, L., Ruggeri, A., Trucco, E.: Automatic generation of synthetic retinal fundus images: vascular network. Proc. Comput. Sci. 90(Suppl. C), 54–60 (2016)
[+]
Chen, X., Xu, Y., Yan, S., Wong, D.W.K., Wong, T.Y., Liu, J.: Automatic feature learning for glaucoma detection based on deep learning. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 669–677. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_80
Fiorini, S., Biasi, M.D., Ballerini, L., Trucco, E., Ruggeri, A.: Automatic generation of synthetic retinal fundus images. In: Smart Tools and Apps for Graphics - Eurographics Italian Chapter Conference. The Eurographics Association (2014)
Bonaldi, L., Menti, E., Ballerini, L., Ruggeri, A., Trucco, E.: Automatic generation of synthetic retinal fundus images: vascular network. Proc. Comput. Sci. 90(Suppl. C), 54–60 (2016)
Costa, P., et al.: End-to-end adversarial retinal image synthesis. IEEE Trans. Med. Imaging 37(3), 781–791 (2018)
Costa, P., et al.: Towards adversarial retinal image synthesis. arXiv:1701.08974 (2017)
Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. arXiv:1312.6114 (2013)
Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv: 1511.06434 , November 2015
Köhler, T., Budai, A., Kraus, M.F., Odstrčilik, J., Michelson, G., Hornegger., J.: Automatic no-reference quality assessment for retinal fundus images using vessel segmentation. In: Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems, pp. 95–100 (2013)
Sivaswamy, J., Krishnadas, S., Joshi, G.D., Jain, M., Ujjwal, A.S.T.: Drishti-GS: retinal image dataset for optic nerve head (ONH) segmentation. In: 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), pp. 53–56 (2014)
Zhang, Z., et al.: ORIGA-light: an online retinal fundus image database for glaucoma analysis and research. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, pp. 3065–3068, August 2010
Medina-Mesa, E., et al.: Estimating the amount of hemoglobin in the neuroretinal rim using color images and OCT. Curr. Eye Res. 41(6), 798–805 (2015)
sjchoi86: sjchoi86-HRF Database (2017). https://github.com/sjchoi86/retina_dataset/tree/master/dataset . Accessed 02 July 2017
Chollet, F., et al.: Keras (2015). https://github.com/fchollet/keras . Accessed 21 May 2017
Theis, L., van den Oord, A., Bethge, M.: A note on the evaluation of generative models. In: International Conference on Learning Representations, April 2016
Morales, S., Naranjo, V., Navea, A., Alcañiz, M.: Computer-aided diagnosis software for hypertensive risk determination through fundus image processing. IEEE J. Biomed. Health Inform. 18(6), 1757–1763 (2014)
White, T.: Sampling generative networks. arXiv:1609.04468 (2016)
Fu, H., Cheng, J., Xu, Y., Wong, D.W.K., Liu, J., Cao, X.: Joint optic disc and cup segmentation based on multi-label deep network and polar transformation. IEEE Trans. Med. Imaging (2018)
[-]