- -

Estimación de orientación de un vehículo aéreo no modelado usando fusión de sensores inerciales y aprendizaje de máquina

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Estimación de orientación de un vehículo aéreo no modelado usando fusión de sensores inerciales y aprendizaje de máquina

Mostrar el registro completo del ítem

Fonnegra, R.; Goez, G.; Tobón, A. (2019). Estimación de orientación de un vehículo aéreo no modelado usando fusión de sensores inerciales y aprendizaje de máquina. Revista Iberoamericana de Automática e Informática. 16(4):415-422. https://doi.org/10.4995/riai.2019.11286

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/126284

Ficheros en el ítem

Metadatos del ítem

Título: Estimación de orientación de un vehículo aéreo no modelado usando fusión de sensores inerciales y aprendizaje de máquina
Otro titulo: Orientation estimating in a non-modeled aerial vehicle using inertial sensor fusion and machine learning techniques
Autor: Fonnegra, Ruben Goez, German Tobón, Andrés
Fecha difusión:
Resumen:
[EN] Unmanned Aerial Vehicles (UAV) have oered alternatives for applications in which human integrity is compromised. In this sense, the need of increasing autonomy in these vehicles presents an alternative to artificial ...[+]


[ES] Los vehículos aéreos no tripulados (UAV) ofrecen alternativas para diversas aplicaciones en las que se compromete la integridad humana. En este sentido, la necesidad de incrementar la autonomía de estos vehículos ...[+]
Palabras clave: Sensores inerciales , Inteligencia artificial , Aprendizaje de máquinas , UAV , Inertial Sensors , Artificial Intelligence , Machine Learning
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Revista Iberoamericana de Automática e Informática.. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.4995/riai.2019.11286
Versión del editor: https://doi.org/10.4995/riai.2019.11286
Tipo: Artículo

References

Carabin, G., Vidoni, R., Mazzetto, F., Gasparetto, A., 2017. Dynamic model and instability evaluation of an articulated mobile agri-robot. In: Advances in Italian Mechanism Science. Springer, pp. 335-343. https://doi.org/10.1007/978-3-319-48375-7_36

Castrillón, O. D., Giraldo, J. A., C, W. A. S., 2008. Sistema de Clasificación Bayesiano basado en Múltiples Clases. Sistemas, Cibernética e Informática 5 (1), 25-28.

Chapman, G. B., Sonnenberg, F. A., 1995. A study of cross-validation and bootstrap for accuracy estimation and model selection. In: International joint conference on artificial intelligence (IJCAI). p. 456. URL: http://books.google.es/books?id=c0XGM6mIMAkC https://doi.org/10.1067/mod.2000.109031 [+]
Carabin, G., Vidoni, R., Mazzetto, F., Gasparetto, A., 2017. Dynamic model and instability evaluation of an articulated mobile agri-robot. In: Advances in Italian Mechanism Science. Springer, pp. 335-343. https://doi.org/10.1007/978-3-319-48375-7_36

Castrillón, O. D., Giraldo, J. A., C, W. A. S., 2008. Sistema de Clasificación Bayesiano basado en Múltiples Clases. Sistemas, Cibernética e Informática 5 (1), 25-28.

Chapman, G. B., Sonnenberg, F. A., 1995. A study of cross-validation and bootstrap for accuracy estimation and model selection. In: International joint conference on artificial intelligence (IJCAI). p. 456. URL: http://books.google.es/books?id=c0XGM6mIMAkC https://doi.org/10.1067/mod.2000.109031

Colmenares-Quintero, R. F., Goez-Sánchez, G. D., 2018. Route planning in real ' time for short-range aircraft with a constant-volume-combustor-geared turbofan to minimize operating costs by particle swarm optimization. Cogent Engineering 5 (1). URL: https://doi.org/10.1080/23311916.2018.1429984

Cover, T. M., Hart, P. E., 1967. Nearest Neighbor pattern classification. Information Theory, IEEE Transactions on 1 (13), 21-27. https://doi.org/10.1007/978-0-387-30164-8

Darío, R., Tarazona, F., Lopera, F. R., 2014. Anti-collision System for Navigation Inside an UAV Using Fuzzy Controllers and Range Sensors. 978- 1-4799-7666-9/14/$31.00 c 2014 IEEE 2014 XIX Symposium on Image, Signal Processing and Artificial Vision (STSIVA). https://doi.org/10.1109/STSIVA.2014.7010153

Giusti, A., Guzzi, J., Ciresan, D. C., He, F.-L., Rodr ́ıguez, J. P., Fontana, F., Faessler, M., Forster, C., Schmidhuber, J., Di Caro, G., et al., 2016. A machine learning approach to visual perception of forest trails for mobile robots. IEEE Robotics and Automation Letters 1 (2), 661-667. https://doi.org/10.1109/LRA.2015.2509024

Goez, G.-D., 2016. Planeamiento de rutas en vehículos aéreos no tripulados usando algoritmos bio-inspirados sobre sistemas. Ph.D. thesis, Instituto Tecnológico Metropolitano.

Goez, G. D., Velasquez Velez, R. A., Botero Valencia, J. S., 2016. On-Line Route Planning of Uav Using Particle Swarm Optimization on Microcontrollers. IEEE Latin America Transactions 14 (4), 1705-1710. https://doi.org/10.1109/TLA.2016.7483504

Goslinski, J., Giernacki, W., Gardecki, S., 2013. Unscented Kalman Filter for an orientation module of a quadrotor mathematical model. 2013 9th Asian Control Conference, ASCC 2013. https://doi.org/10.1109/ASCC.2013.6606269

Kan, E. M., Lim, M. H., Ong, Y. S., Tan, A. H., Yeo, S. P., 2013. Extreme learning machine terrain-based navigation for unmanned aerial vehicles. Neural Computing and Applications 22 (3-4), 469-477. https://doi.org/10.1007/s00521-012-0866-9

Kumagai, M., Ochiai, T., 2008. Development of a robot balancing on a ball. In: 2008 International Conference on Control, Automation and Systems, IC-CAS 2008. pp. 433-438.

https://doi.org/10.1109/ICCAS.2008.4694680

Li, R., Liu, J., Zhang, L., Hang, Y., Sept 2014. Lidar/mems imu integrated navigation (slam) method for a small uav in indoor environments. In: 2014 DGON Inertial Sensors and Systems (ISS). pp. 1-15. https://doi.org/10.1109/InertialSensors.2014.7049479

Lupashin, S., 2011. Quadrocopter Ball Juggling. In: IEEE/RSJ International Conference on Intelligent Robots and Systems. pp. 5113-5120. URL: file:///home/youssef/Documents/06094506.pdf

MacQueen, J., 1995. Some methods for classification and analysis of multivariate observations. University of California, Los Angeles 199 (233), 281-296. DOI: citeulike-article-id:6083430

Pernkopf, F., 2005. Bayesian network classifiers versus selective k-NN classifier. Pattern Recognition 38 (1), 1-10. https://doi.org/10.1016/j.patcog.2004.05.012

Pieters, P., 2009. Versatile {MEMS} and mems integration technology platforms for cost effective {MEMS} development. Microelectronics and Packaging Conference, 2009. {EMPC} 2009. European, 1-5.

Puls, T., Hein, A., 2010. 3D trajectory control for quadrocopter. IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems, IROS 2010 - Conference Proceedings, 640-645. https://doi.org/10.1109/IROS.2010.5650249

Razak, N. A., Arshad, N. H. M., Adnan, R., Misnan, M. F., Thamrin, N. M., Mahmud, S. F., 2013. A study of Kalman's filter in embedded controller for real-time quadrocopter roll and pitch measurement. Proceedings - 2012 IEEE International Conference on Control System, Computing and Engineering, ICCSCE 2012, 590-595. https://doi.org/10.1109/ICCSCE.2012.6487214

Rish, I., 1999. An empirical study of the naive Bayes classifier. T.J. Watson Research Center, 41-46.

Scholkopf, B., 2006. Smola, Learning with kernels : support vector machines, regularization, optimization, and beyond. No. February. https://doi.org/10.1017/CBO9781107415324.004

Song, Y., Meng, Q. H., Luo, B., Zeng, M., Ma, S. G., Qi, P. F., 2016. A wind estimation method for quadrotors using inertial measurement units. 2016 IEEE International Conference on Robotics and Biomimetics, ROBIO 2016 (2), 426-431. https://doi.org/10.1109/ROBIO.2016.7866359

Tarazona, R. D. F., Lopera, F. R., S ́anchez, G. D. G., 2015. Anti-collision system for navigation inside an UAV using fuzzy controllers and range sensors. 2014 19th Symposium on Image, Signal Processing and Artificial Vision, STSIVA 2014. https://doi.org/10.1109/STSIVA.2014.7010153

Von Chong, A., Caballero, R., 2014. Adaptive Kalman filtering for the estimation of orientation and displacements in submarine systems. Proceedings of the 2014 IEEE Central America and Panama Convention, CONCAPAN 2014 (Concapan Xxxiv). https://doi.org/10.1109/CONCAPAN.2014.7000439

Wendel, J., Meister, O., Schlaile, C., Trommer, G. F., 2006. An integrated gps/mems-imu navigation system for an autonomous helicopter. Aerospace Science and Technology 10 (6), 527-533. https://doi.org/10.1016/j.ast.2006.04.002

Zul Azfar, A., Hazry, D., 2011. A simple approach on implementing IMU sensor fusion in PID controller for stabilizing quadrotor flight control. Proceedings - 2011 IEEE 7th International Colloquium on Signal Processing and Its Applications, CSPA 2011, 28-32. https://doi.org/10.1109/CSPA.2011.5759837

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem