Mostrar el registro sencillo del ítem
dc.contributor.author | Fonnegra, Ruben | es_ES |
dc.contributor.author | Goez, German | es_ES |
dc.contributor.author | Tobón, Andrés | es_ES |
dc.date.accessioned | 2019-09-24T07:39:54Z | |
dc.date.available | 2019-09-24T07:39:54Z | |
dc.date.issued | 2019-09-20 | |
dc.identifier.issn | 1697-7912 | |
dc.identifier.uri | http://hdl.handle.net/10251/126284 | |
dc.description.abstract | [EN] Unmanned Aerial Vehicles (UAV) have oered alternatives for applications in which human integrity is compromised. In this sense, the need of increasing autonomy in these vehicles presents an alternative to artificial intelligence areas to enhance navigation capacities through several environments. This article presents an evaluation for estimating inclination and orientation, using automatic learning algorithms for a dynamic multi-rotor plant. To do so, an experiment is proposed to collect the data from multiple IMU sensors over an UAV main board, and submitted to dierent inclinations before achieving the classification task. The reported results using k nearest neighbors (k - NN), support vector machines (S VM) and Bayes show eficiency during the recognition, obtaining an accuracy score up to 99 %. Besides, the algoritms could be combined along with robust control techniques, which is ideal for implementation in embedded systems with low processing capacities. | es_ES |
dc.description.abstract | [ES] Los vehículos aéreos no tripulados (UAV) ofrecen alternativas para diversas aplicaciones en las que se compromete la integridad humana. En este sentido, la necesidad de incrementar la autonomía de estos vehículos presenta una alternativa al área de inteligencia artificial para aumentar las capacidades de navegación en diversos entornos. Este artículo presenta una evaluación para estimación de inclinación y orientación, utilizando algoritmos de aprendizaje automático para una planta dinámica con múltiples rotores. Para esto se propone un experimento para recopilar datos de unidades de medición inercial (IMU) sobre la placa de un UAV, y sometidos a diferentes inclinaciones antes de lograr la tarea de clasificación. Los resultados reportados usando los algoritmos de k vecinos más cercanos (k-NN), máquinas de soporte vectorial (SVM) y de Bayes muestran eficiencia en el reconocimiento, obteniendo una precisión hasta del 99 %. Además, estos algoritmos podrían combinarse con técnicas de control robustas, ideal para la implementación en sistemas con capacidades de procesamiento limitadas. | es_ES |
dc.language | Español | es_ES |
dc.relation.ispartof | Revista Iberoamericana de Automática e Informática. | |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Sensores inerciales | es_ES |
dc.subject | Inteligencia artificial | es_ES |
dc.subject | Aprendizaje de máquinas | es_ES |
dc.subject | UAV | es_ES |
dc.subject | Inertial Sensors | es_ES |
dc.subject | Artificial Intelligence | es_ES |
dc.subject | Machine Learning | es_ES |
dc.title | Estimación de orientación de un vehículo aéreo no modelado usando fusión de sensores inerciales y aprendizaje de máquina | es_ES |
dc.title.alternative | Orientation estimating in a non-modeled aerial vehicle using inertial sensor fusion and machine learning techniques | es_ES |
dc.type | Artículo | es_ES |
dc.date.updated | 2019-09-24T06:57:08Z | |
dc.identifier.doi | 10.4995/riai.2019.11286 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Fonnegra, R.; Goez, G.; Tobón, A. (2019). Estimación de orientación de un vehículo aéreo no modelado usando fusión de sensores inerciales y aprendizaje de máquina. Revista Iberoamericana de Automática e Informática. 16(4):415-422. https://doi.org/10.4995/riai.2019.11286 | es_ES |
dc.description.accrualMethod | SWORD | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/riai.2019.11286 | es_ES |
dc.description.upvformatpinicio | 415 | es_ES |
dc.description.upvformatpfin | 422 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 16 | |
dc.description.issue | 4 | |
dc.identifier.eissn | 1697-7920 | |
dc.description.references | Carabin, G., Vidoni, R., Mazzetto, F., Gasparetto, A., 2017. Dynamic model and instability evaluation of an articulated mobile agri-robot. In: Advances in Italian Mechanism Science. Springer, pp. 335-343. https://doi.org/10.1007/978-3-319-48375-7_36 | es_ES |
dc.description.references | Castrillón, O. D., Giraldo, J. A., C, W. A. S., 2008. Sistema de Clasificación Bayesiano basado en Múltiples Clases. Sistemas, Cibernética e Informática 5 (1), 25-28. | es_ES |
dc.description.references | Chapman, G. B., Sonnenberg, F. A., 1995. A study of cross-validation and bootstrap for accuracy estimation and model selection. In: International joint conference on artificial intelligence (IJCAI). p. 456. URL: http://books.google.es/books?id=c0XGM6mIMAkC https://doi.org/10.1067/mod.2000.109031 | es_ES |
dc.description.references | Colmenares-Quintero, R. F., Goez-Sánchez, G. D., 2018. Route planning in real ' time for short-range aircraft with a constant-volume-combustor-geared turbofan to minimize operating costs by particle swarm optimization. Cogent Engineering 5 (1). URL: https://doi.org/10.1080/23311916.2018.1429984 | es_ES |
dc.description.references | Cover, T. M., Hart, P. E., 1967. Nearest Neighbor pattern classification. Information Theory, IEEE Transactions on 1 (13), 21-27. https://doi.org/10.1007/978-0-387-30164-8 | es_ES |
dc.description.references | Darío, R., Tarazona, F., Lopera, F. R., 2014. Anti-collision System for Navigation Inside an UAV Using Fuzzy Controllers and Range Sensors. 978- 1-4799-7666-9/14/$31.00 c 2014 IEEE 2014 XIX Symposium on Image, Signal Processing and Artificial Vision (STSIVA). https://doi.org/10.1109/STSIVA.2014.7010153 | es_ES |
dc.description.references | Giusti, A., Guzzi, J., Ciresan, D. C., He, F.-L., Rodr ́ıguez, J. P., Fontana, F., Faessler, M., Forster, C., Schmidhuber, J., Di Caro, G., et al., 2016. A machine learning approach to visual perception of forest trails for mobile robots. IEEE Robotics and Automation Letters 1 (2), 661-667. https://doi.org/10.1109/LRA.2015.2509024 | es_ES |
dc.description.references | Goez, G.-D., 2016. Planeamiento de rutas en vehículos aéreos no tripulados usando algoritmos bio-inspirados sobre sistemas. Ph.D. thesis, Instituto Tecnológico Metropolitano. | es_ES |
dc.description.references | Goez, G. D., Velasquez Velez, R. A., Botero Valencia, J. S., 2016. On-Line Route Planning of Uav Using Particle Swarm Optimization on Microcontrollers. IEEE Latin America Transactions 14 (4), 1705-1710. https://doi.org/10.1109/TLA.2016.7483504 | es_ES |
dc.description.references | Goslinski, J., Giernacki, W., Gardecki, S., 2013. Unscented Kalman Filter for an orientation module of a quadrotor mathematical model. 2013 9th Asian Control Conference, ASCC 2013. https://doi.org/10.1109/ASCC.2013.6606269 | es_ES |
dc.description.references | Kan, E. M., Lim, M. H., Ong, Y. S., Tan, A. H., Yeo, S. P., 2013. Extreme learning machine terrain-based navigation for unmanned aerial vehicles. Neural Computing and Applications 22 (3-4), 469-477. https://doi.org/10.1007/s00521-012-0866-9 | es_ES |
dc.description.references | Kumagai, M., Ochiai, T., 2008. Development of a robot balancing on a ball. In: 2008 International Conference on Control, Automation and Systems, IC-CAS 2008. pp. 433-438. | es_ES |
dc.description.references | https://doi.org/10.1109/ICCAS.2008.4694680 | es_ES |
dc.description.references | Li, R., Liu, J., Zhang, L., Hang, Y., Sept 2014. Lidar/mems imu integrated navigation (slam) method for a small uav in indoor environments. In: 2014 DGON Inertial Sensors and Systems (ISS). pp. 1-15. https://doi.org/10.1109/InertialSensors.2014.7049479 | es_ES |
dc.description.references | Lupashin, S., 2011. Quadrocopter Ball Juggling. In: IEEE/RSJ International Conference on Intelligent Robots and Systems. pp. 5113-5120. URL: file:///home/youssef/Documents/06094506.pdf | es_ES |
dc.description.references | MacQueen, J., 1995. Some methods for classification and analysis of multivariate observations. University of California, Los Angeles 199 (233), 281-296. DOI: citeulike-article-id:6083430 | es_ES |
dc.description.references | Pernkopf, F., 2005. Bayesian network classifiers versus selective k-NN classifier. Pattern Recognition 38 (1), 1-10. https://doi.org/10.1016/j.patcog.2004.05.012 | es_ES |
dc.description.references | Pieters, P., 2009. Versatile {MEMS} and mems integration technology platforms for cost effective {MEMS} development. Microelectronics and Packaging Conference, 2009. {EMPC} 2009. European, 1-5. | es_ES |
dc.description.references | Puls, T., Hein, A., 2010. 3D trajectory control for quadrocopter. IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems, IROS 2010 - Conference Proceedings, 640-645. https://doi.org/10.1109/IROS.2010.5650249 | es_ES |
dc.description.references | Razak, N. A., Arshad, N. H. M., Adnan, R., Misnan, M. F., Thamrin, N. M., Mahmud, S. F., 2013. A study of Kalman's filter in embedded controller for real-time quadrocopter roll and pitch measurement. Proceedings - 2012 IEEE International Conference on Control System, Computing and Engineering, ICCSCE 2012, 590-595. https://doi.org/10.1109/ICCSCE.2012.6487214 | es_ES |
dc.description.references | Rish, I., 1999. An empirical study of the naive Bayes classifier. T.J. Watson Research Center, 41-46. | es_ES |
dc.description.references | Scholkopf, B., 2006. Smola, Learning with kernels : support vector machines, regularization, optimization, and beyond. No. February. https://doi.org/10.1017/CBO9781107415324.004 | es_ES |
dc.description.references | Song, Y., Meng, Q. H., Luo, B., Zeng, M., Ma, S. G., Qi, P. F., 2016. A wind estimation method for quadrotors using inertial measurement units. 2016 IEEE International Conference on Robotics and Biomimetics, ROBIO 2016 (2), 426-431. https://doi.org/10.1109/ROBIO.2016.7866359 | es_ES |
dc.description.references | Tarazona, R. D. F., Lopera, F. R., S ́anchez, G. D. G., 2015. Anti-collision system for navigation inside an UAV using fuzzy controllers and range sensors. 2014 19th Symposium on Image, Signal Processing and Artificial Vision, STSIVA 2014. https://doi.org/10.1109/STSIVA.2014.7010153 | es_ES |
dc.description.references | Von Chong, A., Caballero, R., 2014. Adaptive Kalman filtering for the estimation of orientation and displacements in submarine systems. Proceedings of the 2014 IEEE Central America and Panama Convention, CONCAPAN 2014 (Concapan Xxxiv). https://doi.org/10.1109/CONCAPAN.2014.7000439 | es_ES |
dc.description.references | Wendel, J., Meister, O., Schlaile, C., Trommer, G. F., 2006. An integrated gps/mems-imu navigation system for an autonomous helicopter. Aerospace Science and Technology 10 (6), 527-533. https://doi.org/10.1016/j.ast.2006.04.002 | es_ES |
dc.description.references | Zul Azfar, A., Hazry, D., 2011. A simple approach on implementing IMU sensor fusion in PID controller for stabilizing quadrotor flight control. Proceedings - 2011 IEEE 7th International Colloquium on Signal Processing and Its Applications, CSPA 2011, 28-32. https://doi.org/10.1109/CSPA.2011.5759837 | es_ES |