- -

Control descentralizado basado en eventos para el consenso de múltiples robots tipo péndulo invertido en el esquema líder-seguidor

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Control descentralizado basado en eventos para el consenso de múltiples robots tipo péndulo invertido en el esquema líder-seguidor

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ramírez-Cárdenas, O.D. es_ES
dc.contributor.author Guerrero-Castellanos, J.F. es_ES
dc.contributor.author Linares-Flores, J. es_ES
dc.contributor.author Durand, S. es_ES
dc.contributor.author Guerrero-Sánchez, W.F. es_ES
dc.date.accessioned 2019-09-24T07:56:15Z
dc.date.available 2019-09-24T07:56:15Z
dc.date.issued 2019-09-20
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/126287
dc.description.abstract [EN] This paper deals with the development of a decentralized event-based control strategy applied to the leader-following consensus problem of a group of two-wheeled self-balancing robots so called mobile inverted pendulum (MIP). The MIP’s nonlinear mathematical model which includes the dynamics of the actuators is presented. Then, the model around an operating point is considered which allows to exploit the differential flatness property of the system, permitting a complete parametrization in terms of the flat output. Assuming that the vehicle network exchange information through a directed and strongly connected graph, a decentralized control law is designed, and an event-based algorithm is developed. Then each MIP decides, based on the difference of its current state and its latest broadcast state, when it has to send a new value to its neighbors. The stability of the complete system is carried out in the Lyapunov sense together with the ISS (Input-to-State Stability) approach. Numerical results show the advantages \textit{wrt} information exchange between MIPs, as well as a good performance in the angular stabilization under two scenarios: regulation and tracking problem. es_ES
dc.description.abstract [ES] El trabajo presenta el diseno de una estrategia de control distribuido con comunicación activada por eventos, que resuelve el problema de consenso líder-seguidor, de un conjunto de robots móviles tipo péndulo invertido (RMPI). La linealización de las ecuaciones de movimiento de los RMPI, alrededor del punto de equilibrio, permiten explotar las propiedades de planitud diferencial, dando lugar a una reparametrización del sistema mediante la salida plana. Asumiendo que los vehículos se comunican mediante una red, cuya topología es representada por un grafo no dirigido y fuertemente conectado, se disena una ley de control distribuido y una funcion de evento que indica el instante en el que el i-ésimo vehículo debe transmitir informacion (su estado) a sus vecinos. El resultado es un intercambio asíncrono de información entre vehículos y donde el tiempo entre eventos no es equidistante. El análisis de estabilidad se lleva a cabo en el sentido de Lyapunov y en el sentido entrada-estado ISS (Input-to-State Stability). Los resultados en simulación numérica muestran el buen desempeño del consenso de la red de vehículos en dos escenarios representativos: regulación y seguimiento de trayectoria. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof Revista Iberoamericana de Automática e Informática.
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Control basado en eventos es_ES
dc.subject Agentes es_ES
dc.subject Control de consenso es_ES
dc.subject Sistemas de transporte y vehículos es_ES
dc.subject Robots móviles y vehículos autónomos inteligentes es_ES
dc.subject Teoría de control automático es_ES
dc.subject Event-based control es_ES
dc.subject Agents es_ES
dc.subject Leader-following consensus es_ES
dc.subject Transport systems and vehicles es_ES
dc.subject Mobile robots and autonomous vehicles es_ES
dc.subject Control Theory es_ES
dc.title Control descentralizado basado en eventos para el consenso de múltiples robots tipo péndulo invertido en el esquema líder-seguidor es_ES
dc.title.alternative Decentralized event-based leader-following consensus for a group of two-wheeled self-balancing robots es_ES
dc.type Artículo es_ES
dc.date.updated 2019-09-24T06:56:41Z
dc.identifier.doi 10.4995/riai.2019.11113
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Ramírez-Cárdenas, O.; Guerrero-Castellanos, J.; Linares-Flores, J.; Durand, S.; Guerrero-Sánchez, W. (2019). Control descentralizado basado en eventos para el consenso de múltiples robots tipo péndulo invertido en el esquema líder-seguidor. Revista Iberoamericana de Automática e Informática. 16(4):435-446. https://doi.org/10.4995/riai.2019.11113 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/riai.2019.11113 es_ES
dc.description.upvformatpinicio 435 es_ES
dc.description.upvformatpfin 446 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 16
dc.description.issue 4
dc.identifier.eissn 1697-7920
dc.description.references Ahmed, N., Cortes, J., Martinez, S., 2016a. Distributed control and estimation of robotic vehicle networks: Overview of the special issue. IEEE Control Systems 36 (2), 36-40. https://doi.org/10.1109/MCS.2015.2512030 es_ES
dc.description.references Ahmed, N., Cortes, J., Martinez, S., 2016b. Distributed control and estimation of robotic vehicle networks: Overview of the special issue-part II. IEEE Control Systems 36 (4), 18-21. https://doi.org/10.1109/MCS.2016.2558398 es_ES
dc.description.references Aström, K. J., Murray, R. M., 2010. Feedback systems: an introduction for scientists and engineers. Princeton University Press. https://doi.org/10.2307/j.ctvcm4gdk es_ES
dc.description.references Brisilla, R., Sankaranarayanan, V., 2015. Nonlinear control of mobile inverted pendulum. Robotics and Autonomous Systems 70, 145 - 155. https://doi.org/10.1016/j.robot.2015.02.012 es_ES
dc.description.references Bullo, F., Cortés, J., Martinez, S., 2009. Distributed Control of Robotic Networks: A Mathematical Approach to Motion Coordination Algorithms: A Mathematical Approach to Motion Coordination Algorithms. Princeton University Press. https://doi.org/10.1515/9781400831470 es_ES
dc.description.references Chung, T. L., Bui, T. H., Nguyen, T. T., Kim, S. B., Jul 2004. Sliding mode control of two-wheeled welding mobile robot for tracking smooth curved welding path. KSME International Journal 18 (7), 1094-1106. https://doi.org/10.1007/BF02983284 es_ES
dc.description.references Dimarogonas, D. V., Frazzoli, E., Johansson, K. H., 2012. Distributed eventtriggered control for multi-agent systems. IEEE Transactions on Automatic Control 57 (5), 1291-1297. https://doi.org/10.1109/TAC.2011.2174666 es_ES
dc.description.references Durand, S., Marchand, N., Aug 2009. Further results on event-based pid controller. In: Control Conference (ECC), 2009 European. pp. 1979-1984. https://doi.org/10.23919/ECC.2009.7074694 es_ES
dc.description.references Frías, O. O. G., 2013. Estabilización del péndulo invertido sobre dos ruedas mediante el método de lyapunov. Revista Iberoamericana de Automática e Informática Industrial RIAI 10 (1), 30 - 36. https://doi.org/10.1016/j.riai.2012.11.003 es_ES
dc.description.references Garcia, E., Cao, Y., Wang, X., Casbeer, D. W., July 2015. Decentralized eventtriggered consensus of linear multi-agent systems under directed graphs. In: 2015 American Control Conference (ACC). pp. 5764-5769. https://doi.org/10.1109/ACC.2015.7172242 es_ES
dc.description.references Ge, X., Han, Q. L., 2017. Distributed formation control of networked multiagent systems using a dynamic event-triggered communication mechanism. IEEE Transactions on Industrial Electronics PP (99), 1-1. es_ES
dc.description.references Grasser, F., D'Arrigo, A., Colombi, S., Rufer, A. C., Feb 2002. Joe: a mobile, inverted pendulum. IEEE Transactions on Industrial Electronics 49 (1), 107-114. https://doi.org/10.1109/41.982254 es_ES
dc.description.references Guerrero Castellanos, J. F., Vega-Alonzo, A., Marchand, N., Durand, S., Linares-Flores, J., Mino-Aguilar, G., 2017. Real-time event-based formation control of a group of vtol-uavs. In: Proceedings of the 3rd IEEE International Conference on Event-Based Control, Communication and Signal Processing (EBCCSP). Hal-01527633. https://doi.org/10.1109/EBCCSP.2017.8022817 es_ES
dc.description.references Guinaldo, M., Fábregas, E., Farias, G., Dormido-Canto, S., Chaos, D., Sánchez, J., Dormido, S., 2013. A mobile robots experimental environment with event-based wireless communication. Sensors 13 (7), 9396-9413. https://doi.org/10.3390/s130709396 es_ES
dc.description.references Hebertt Sira-Ramírez, Alberto Luviano-Juárez, M. R.-N. E.-W. Z.-B., 2017. Active Disturbance Rejection Control of Dynamic Systems. Butterworth- Heinemann. es_ES
dc.description.references Lewis, F. L., Zhang, H., Hengster-Movric, K., Das, A., 2013. Cooperative control of multi-agent systems: optimal and adaptive design approaches. Springer Science & Business Media. https://doi.org/10.1007/978-1-4471-5574-4 es_ES
dc.description.references Li, Z., Yang, C., Fan, L., 2003. Advanced Control of Wheeled Inverted Pendulum Systems. Springer-Verlag London. es_ES
dc.description.references Marchand, N., Durand, S., Guerrero-Castellanos, J. F., 2013. A general formula for event-based stabilization of nonlinear systems. Automatic Control, IEEE Transactions on 58 (5), 1332-1337. https://doi.org/10.1109/TAC.2012.2225493 es_ES
dc.description.references Müllhaupt, P., 2009. Introduction à l'analyse et à la commande des systèmes non linéaires. PPUR Presses polytechniques. es_ES
dc.description.references Olfati-Saber, R., Murray, R. M., 2004. Consensus problems in networks of agents with switching topology and time-delays. Automatic Control, IEEE Transactions on 49 (9), 1520-1533. https://doi.org/10.1109/TAC.2004.834113 es_ES
dc.description.references Pathak, K., Franch, J., Agrawal, S. K., June 2005. Velocity and position control of a wheeled inverted pendulum by partial feedback linearization. IEEE Transactions on Robotics 21 (3), 505-513. https://doi.org/10.1109/TRO.2004.840905 es_ES
dc.description.references Ren, W., Beard, R. W., 2008. Distributed consensus in multi-vehicle cooperative control. Springer. https://doi.org/10.1007/978-1-84800-015-5 es_ES
dc.description.references Salerno, A., Angeles, J., Sept 2003. On the nonlinear controllability of a quasiholonomic mobile robot. In: 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422). Vol. 3. pp. 3379-3384 vol.3. es_ES
dc.description.references Sánchez, J., Guarnes, M., Dormido, S., 2009. On the application of different event-based sampling strategies to the control of a simple industrial process. Sensors 9, 6795-6818. https://doi.org/10.3390/s90906795 es_ES
dc.description.references Sanchez-Santana, J., Guerrero-Castellanos, J., Villarreal-Cervantes, M., Ramírez-Martínez, S., 2018. Control distribuido y disparado por eventos para la formación de robots móviles tipo (3, 0) ' ?. In: Congreso Nacional de Control Automático. es_ES
dc.description.references Schinstock, D., McGahee, K., Smith, S., July 2016. Engaging students in control systems using a balancing robot in a mechatronics course. In: 2016 American Control Conference (ACC). pp. 6658-6663. https://doi.org/10.1109/ACC.2016.7526719 es_ES
dc.description.references Segway, 2018. Segway human transporter. URL: http://www.segway.com es_ES
dc.description.references Seyboth, G. S., Dimarogonas, D. V., Johansson, K. H., 2013. Event-based broadcasting for multi-agent average consensus. Automatica 49 (1), 245- 252. https://doi.org/10.1016/j.automatica.2012.08.042 es_ES
dc.description.references Sira-Ramírez, H., Agrawal, S. K., 2004. Differentially Flat Systems. Marcel Dekker, Inc. https://doi.org/10.1201/9781482276640 es_ES
dc.description.references Tabuada, P., 2007. Event-triggered real-time scheduling of stabilizing control tasks. IEEE Transactions on Automatic Control 52 (9), 1680-1685. https://doi.org/10.1109/TAC.2007.904277 es_ES
dc.description.references Tsai, C. C., Li, Y. X., Tai, F. C., Sept 2017. Backstepping sliding-mode leader- follower consensus formation control of uncertain networked heterogeneous nonholonomic wheeled mobile multirobots. In: 2017 56th Annual Conferen- ce of the Society of Instrument and Control Engineers of Japan (SICE). pp. 1407-1412. https://doi.org/10.23919/SICE.2017.8105661 es_ES
dc.description.references Velasco, M., Martí, P., Bini, E., 2009. On lyapunov sampling for event-driven controllers. In: Decision and Control, 2009 held jointly with the 2009 28th Chinese Control Conference. CDC/CCC 2009. Proceedings of the 48th IEEE Conference on. IEEE, pp. 6238-6243. https://doi.org/10.1109/CDC.2009.5400541 es_ES
dc.description.references Xie, D., Xu, S., Zhang, B., Li, Y., Chu, Y., 2016. Consensus for multi-agent systems with distributed adaptive control and an event-triggered communication strategy. IET Control Theory Applications 10 (13), 1547-1555. https://doi.org/10.1049/iet-cta.2015.1221 es_ES
dc.description.references Yamamoto, Y., 2009. Nxtway-gs model-based design. es_ES
dc.description.references Yang, D., Ren, W., Liu, X., Dec 2014. Decentralized consensus for linear multi- agent systems under general directed graphs based on event-triggered/self- triggered strategy. In: 53rd IEEE Conference on Decision and Control. pp. 1983-1988. https://doi.org/10.1109/CDC.2014.7039689 es_ES
dc.description.references Zhou, F., Huang, Z., Yang, Y., Wang, J., Li, L., Peng, J., 2017. Decentralized event-triggered cooperative control for multi-agent systems with uncertain dynamics using local estimators. Neurocomputing 237, 388 - 396. https://doi.org/10.1016/j.neucom.2017.01.029 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem