- -

Control inteligente para mejorar el rendimiento de una plataforma semisumergible híbrida con aerogenerador y convertidores de oleaje: sistema de control borroso para la turbina

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Control inteligente para mejorar el rendimiento de una plataforma semisumergible híbrida con aerogenerador y convertidores de oleaje: sistema de control borroso para la turbina

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Mayorga Rubio, Pedro es_ES
dc.contributor.author Fernández Quijano, Javier es_ES
dc.contributor.author Zambrana López, Pablo es_ES
dc.contributor.author Fernández Lozano, J. Jesús es_ES
dc.contributor.author García Cerezo, Alfonso es_ES
dc.contributor.author Ortega Casanova, Joaquín es_ES
dc.date.accessioned 2019-09-24T09:40:20Z
dc.date.available 2019-09-24T09:40:20Z
dc.date.issued 2019-09-20
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/126300
dc.description.abstract [EN] The use of sea wind energy is limited by the limited viable spaces on the onshore or in shallow waters. This makes the use of offshore semi-submersible platforms to be an attractive option, which additionally enables to incorporate other elements as wave converters. However, the interactions between wave converters and wind turbine increase the complexity of the system, and the traditional control techniques do not allow to integrate in an easy way those interactions, thus limiting the efficiency of energy extraction. The use of intelligent control techniques –in particular, fuzzy control– allows to take full account of the said interactions and to improve energy extraction efficiency, although simulation models and systems including those effects are required. This paper presents the development of a fuzzy-logic based control system, scalable to consider the effects due to wave converters due to an in-house developed simulation model, for the control of a wind turbine installed on a semi-submersible platform. es_ES
dc.description.abstract [ES] El aprovechamiento de la energía eólica marina está limitado por la saturación de los emplazamientos viables en tierra o aguas poco profundas. Esto hace que el empleo de plataformas semisumergibles mar adentro sea una opción atractiva, que además permite incorporar otros elementos como convertidores de oleaje. Sin embargo, las interacciones entre convertidores de olas y aerogeneradores aumentan la complejidad del sistema, y las técnicas de control convencional no permiten considerar fácilmente estas interacciones, limitando el aprovechamiento de la energía primaria. El uso de técnicas de control inteligente, en particular control borroso, permite considerar estas interacciones y mejorar este aprovechamiento, si bien es necesario contar con modelos y sistemas de simulación que incluyan estos efectos. Este trabajo presenta el desarrollo de un sistema de control basado en lógica borrosa, escalable para considerar los efectos del control de convertidores de oleaje; para el control de un aerogenerador instalado en una plataforma semisumergible OC4. es_ES
dc.description.sponsorship Este trabajo ha sido realizado parcialmente gracias al apoyo del Ministerio de Economía y Competitividad del Gobierno de España, a través del proyecto ORPHEO (RTC-2016-5712-3) del Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016, Programa Estatal de Investigación, Desarrollo e Innovación orientada a los Retos de la Sociedad, y de la Unión Europea a través del proyecto WIP10+ de la convocatoria ERA-NET DEMOWIND, de CDTI (España) y BEISS (Reino Unido), a través del programa de investigación e innovación H2020. Asimismo, los autores desean agradece a D. Miguel Martín Guzmán su colaboración en este trabajo. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof Revista Iberoamericana de Automática e Informática.
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Técnicas de control inteligente es_ES
dc.subject Control borroso y sistemas borrosos es_ES
dc.subject Simulación de sistemas es_ES
dc.subject Energías renovables es_ES
dc.subject Control PID y variantes es_ES
dc.subject Sostenibilidad y estabilidad medioambiental es_ES
dc.subject Modelado, diseño e integración de sistemas mecatrónicos es_ES
dc.subject Intelligent control es_ES
dc.subject Fuzzy control and fuzzy systems es_ES
dc.subject System Simulation es_ES
dc.subject Renewable energy es_ES
dc.subject PID control es_ES
dc.subject Sustainability and environmental stability es_ES
dc.subject Modelling, development and integration of mechatronic systems es_ES
dc.subject Electric motors es_ES
dc.title Control inteligente para mejorar el rendimiento de una plataforma semisumergible híbrida con aerogenerador y convertidores de oleaje: sistema de control borroso para la turbina es_ES
dc.title.alternative Intelligent control for improving the efficiency of a hybrid semi-submersible platform with wind turbine and wave energy converters: fuzzy control system for the wind turbine es_ES
dc.type Artículo es_ES
dc.date.updated 2019-09-24T06:56:48Z
dc.identifier.doi 10.4995/riai.2019.10972
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RTC-2016-5712-3/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Mayorga Rubio, P.; Fernández Quijano, J.; Zambrana López, P.; Fernández Lozano, JJ.; García Cerezo, A.; Ortega Casanova, J. (2019). Control inteligente para mejorar el rendimiento de una plataforma semisumergible híbrida con aerogenerador y convertidores de oleaje: sistema de control borroso para la turbina. Revista Iberoamericana de Automática e Informática. 16(4):480-491. https://doi.org/10.4995/riai.2019.10972 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/riai.2019.10972 es_ES
dc.description.upvformatpinicio 480 es_ES
dc.description.upvformatpfin 491 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 16
dc.description.issue 4
dc.identifier.eissn 1697-7920
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Abdullah, M. A., A. H M Yatim, C. W. Tan, and R. Saidur. 2012. "A Review of Maximum Power Point Tracking Algorithms for Wind Energy Systems." Renewable and Sustainable Energy Reviews 16(5): 3220-27. http://dx.doi.org/10.1016/j.rser.2012.02.016. es_ES
dc.description.references Alexiadis, M. C., P. S. Dokopoulos, H. S. Sahsamanoglou, and I. M. Manousaridis. 1998. "Short-Term Forecasting of Wind Speed and Related Electrical Power." Solar Energy 63(1): 61-68. https://doi.org/10.1016/S0038-092X(98)00032-2 es_ES
dc.description.references Babarit, A., and A.H. Clément. 2006. "Optimal Latching Control of a Wave Energy Device in Regular and Irregular Waves." Applied Ocean Research 28(2): 77-91. https://www.sciencedirect.com/science/article/pii/S0141118706000423?via%3Dihub (November 13, 2018). https://doi.org/10.1016/j.apor.2006.05.002 es_ES
dc.description.references Babarit, Aurélien, Michel Guglielmi, and Alain H. Clément. 2009. "Declutching Control of a Wave Energy Converter." Ocean Engineering 36(12-13): 1015-24. https://www.sciencedirect.com/science/article/pii/S0029801809001115?via%3Dihub (November 13, 2018). https://doi.org/10.1016/j.oceaneng.2009.05.006 es_ES
dc.description.references Barbounis, T G, J B Theocharis, M C Alexiadis, and P S Dokopoulos.2006. "Long-Term Wind Speed and Power Forecasting Using Local Recurrent Neural Network Models." IEEE Transactions on Energy Conversion 21(1): 273-84. https://doi.org/10.1109/TEC.2005.847954 es_ES
dc.description.references Brekken, T. K. A. 2011. "On Model Predictive Control for a Point Absorber Wave Energy Converter." In 2011 IEEE Trondheim PowerTech, IEEE, 1-8. http://ieeexplore.ieee.org/document/6019367/ (November 13, 2018). Brekken, T. K. A. 2011. "On Model Predictive Control for a Point Absorber Wave Energy Converter." In 2011 IEEE Trondheim PowerTech, IEEE, 1-8. http://ieeexplore.ieee.org/document/6019367/ (November 13, 2018). es_ES
dc.description.references Budar, K., and J. Falnes. 1975. "A Resonant Point Absorber of Ocean-Wave Power." Nature 256(5517): 478-79. http://www.nature.com/doifinder/10.1038/256478a0 (November 13, 2018). https://doi.org/10.1038/256478a0 es_ES
dc.description.references Budar, K., and J. Falnes. 1975. "A Resonant Point Absorber of Ocean-Wave Power." Nature 256(5517): 478-79. http://www.nature.com/doifinder/10.1038/256478a0 (November 13, 2018). es_ES
dc.description.references Cárdenas, Roberto, and Rubén Peña. 2004. "Sensorless Vector Control of Induction Machines for Variable-Speed Wind Energy Applications." IEEE Transactions on Energy Conversion. https://doi.org/10.1109/TEC.2003.821863 es_ES
dc.description.references Castro-Santos, Laura, Almudena Filgueira-Vizoso, Luis Carral-Couce, and José Ángel Fraguela Formoso. 2016. "Economic Feasibility of Floating Offshore Wind Farms." Energy 112: 868-82. https://www.sciencedirect.com/science/article/pii/S0360544216309094?via%3Dihub (November 9, 2018). https://doi.org/10.1016/j.energy.2016.06.135 es_ES
dc.description.references Cheng, Ming, and Ying Zhu. 2014. "The State of the Art of Wind Energy Conversion Systems and Technologies: A Review." Energy Conversion and Management 88: 332-47. https://doi.org/10.1016/j.enconman.2014.08.037 es_ES
dc.description.references Costa, Alexandre et al. 2008. "A Review on the Young History of the Wind Power Short-Term Prediction." Renewable and Sustainable Energy Reviews 12(6): 1725-44. https://doi.org/10.1016/j.rser.2007.01.015 es_ES
dc.description.references Damousis, Ioannis G., Minas C. Alexiadis, John B. Theocharis, and Petros S. Dokopoulos. 2004. "A Fuzzy Model for Wind Speed Prediction and Power Generation in Wind Parks Using Spatial Correlation." IEEE Transactions on Energy Conversion. https://doi.org/10.1109/TEC.2003.821865 es_ES
dc.description.references Ekinci, Firat, Tuǧçe Demirdelen, and Mehmet Bilgili. 2017. "Modelling of Wind Turbine Power Output by Using ANNs and ANFIS Techniques." In 7th International Conference on Innovative Computing Technology, INTECH 2017,. https://doi.org/10.1109/INTECH.2017.8102425 es_ES
dc.description.references Falnes, Johannes. 2002. Ocean Waves and Oscillating Systems. Cambridge: Cambridge University Press. http://ebooks.cambridge.org/ref/id/CBO9780511754630 (November 9, 2018). https://doi.org/10.1017/CBO9780511754630 es_ES
dc.description.references Farfán, Roberto F., Carlos A. Cadena, and Luis T. Villa. 2015. "Experiencia En El Uso de La Lógica Difusa Para El Control Del Seguimiento Del Punto de Máxima Potencia En Convertidores Para Módulos Fotovoltaicos." Revista Iberoamericana de Automática e Informática Industrial RIAI 12(2): 208-17. http://linkinghub.elsevier.com/retrieve/pii/S1697791215000102. https://doi.org/10.1016/j.riai.2015.03.004 es_ES
dc.description.references Farhat, Maissa et al. 2015. "Diseño e Implementación de Un Sistema de Control Estable Basado En Lógica Borrosa Para Optimizar El Rendimiento de Un Sistema de Generación Fotovoltaico." RIAI - Revista Iberoamericana de Automatica e Informatica Industrial 12(4): 476-87. https://doi.org/10.1016/j.riai.2015.07.006 es_ES
dc.description.references Garcia, Mari Cruz, Miguel A. Sanz-Bobi, and Javier del Pico. 2006. "SIMAP: Intelligent System for Predictive Maintenance. Application to the Health Condition Monitoring of a Windturbine Gearbox." Computers in Industry 57(6): 552-68. https://doi.org/10.1016/j.compind.2006.02.011 es_ES
dc.description.references González-González, Asier et al. 2014. "Pitch Based Wind Turbine Intelligent Speed Setpoint Adjustment Algorithms." Energies 7(6): 3793-3809. http://www.mdpi.com/1996-1073/7/6/3793 (November 9, 2018). https://doi.org/10.3390/en7063793 es_ES
dc.description.references IEC. 2009. European Committee for Electrotechnical Standardization Wind Turbines - Part 3: Design Requirements for Offshore Wind Turbines. es_ES
dc.description.references IRENA. 2017. Irena Renewable Energy Capacity Statistics 2017. es_ES
dc.description.references Jonkman, J., S. Butterfield, W. Musial, and G. Scott. 2009. "Definition of a 5-MW Reference Wind Turbine for Offshore System Development." (February). http://www.osti.gov/servlets/purl/947422-nhrlni/. https://doi.org/10.2172/947422 es_ES
dc.description.references Kariniotakis, G. N., G. S. Stavrakakis, and E. F. and Nogaret. 1996. "Wind Power Forecasting Using Advanced Neural Networks Models." IEEE Transactions on Energy Conversion 11(4): 762-67. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=556376. https://doi.org/10.1109/60.556376 es_ES
dc.description.references Kaur, Tarlochan, Sanjay Kumar, and Ravi Segal. 2016. "Application of Artificial Neural Network for Short Term Wind Speed Forecasting." 2016 Biennial International Conference on Power and Energy Systems: Towards Sustainable Energy (PESTSE): 1-5. http://ieeexplore.ieee.org/document/7516458/. https://doi.org/10.1109/PESTSE.2016.7516458 es_ES
dc.description.references Kim, Yun Su, Il Yop Chung, and Seung Il Moon. 2015. "Tuning of the PI Controller Parameters of a PMSG Wind Turbine to Improve Control Performance under Various Wind Speeds." Energies 8(2): 1406-25. https://doi.org/10.3390/en8021406 es_ES
dc.description.references Lasheen, Ahmed, and Abdel Latif Elshafei. 2016. "Wind-Turbine Collective-Pitch Control via a Fuzzy Predictive Algorithm." Renewable Energy. https://doi.org/10.1016/j.renene.2015.10.030 es_ES
dc.description.references Leung, Dennis Y C, and Yuan Yang. 2012. "Wind Energy Development and Its Environmental Impact: A Review." Renewable and Sustainable Energy Reviews 16(1): 1031-39. http://dx.doi.org/10.1016/j.rser.2011.09.024. es_ES
dc.description.references Li, Gong, and Jing Shi. 2010. "On Comparing Three Artificial Neural Networks for Wind Speed Forecasting." Applied Energy 87(7): 2313-20. https://doi.org/10.1016/j.apenergy.2009.12.013 es_ES
dc.description.references Lin, Whei-Min, and Chih-Ming Hong. 2010. "Intelligent Approach to Maximum Power Point Tracking Control Strategy for Variable-Speed Wind Turbine Generation System." Energy 35(6): 2440-47. http://linkinghub.elsevier.com/retrieve/pii/S0360544210000964. https://doi.org/10.1016/j.energy.2010.02.033 es_ES
dc.description.references Pérez de la Portilla, Marina, Amable López Piñeiro, José Andrés Somolinos Sánchez, and Rafael Morales Herrera. 2017. "Modelado Dinámico y Control de Un Dispositivo Sumergido Provisto de Actuadores Hidrostáticos." Revista Iberoamericana de Automática e Informática industrial 15(1): 12. https://polipapers.upv.es/index.php/RIAI/article/view/8824 (February 21, 2019). https://doi.org/10.4995/riai.2017.8824 es_ES
dc.description.references Pucci, Marcello, and Maurizio Cirrincione. 2011. "Neural MPPT Control of Wind Generators with Induction Machines without Speed Sensors." IEEE Transactions on Industrial Electronics 58(1): 37-47. https://doi.org/10.1109/TIE.2010.2043043 es_ES
dc.description.references Red Eléctrica de España. 2017. El Sistema Eléctrico Español. es_ES
dc.description.references Sahin, Ahmet Duran. 2004. "Progress and Recent Trends in Wind Energy." Progress in Energy and Combustion Science 30(5): 501-43. https://doi.org/10.1016/j.pecs.2004.04.001 es_ES
dc.description.references Santos, M. 2011. "Un Enfoque Aplicado Del Control Inteligente." Revista Iberoamericana de Automática e Informática Industrial RIAI 8(4): 283-96. https://www.sciencedirect.com/science/article/pii/S1697791211000501 (November 9, 2018). https://doi.org/10.1016/j.riai.2011.09.016 es_ES
dc.description.references Shahmaleki, Pourya. 2018. "Enhancing Wind Turbine's Performance Using Fuzzy Pitch and Torque Controllers." In World Automation Congress Proceedings. https://doi.org/10.23919/WAC.2018.8430410 es_ES
dc.description.references Simoes, M G, B K Bose, and R J Spiegel. 1997. "Fuzzy Logic Based Intelligent Control of a Variable Speed Cage Machine Wind Generation System." Power Electronics, IEEE Transactions on 12(1): 87-95. https://doi.org/10.1109/63.554173 es_ES
dc.description.references Soman, S S, H Zareipour, O Malik, and P Mandal. 2010. "A Review of Wind Power and Wind Speed Forecasting Methods with Different Time Horizons." North American Power Symposium (NAPS): 1-8. https://doi.org/10.1109/NAPS.2010.5619586 es_ES
dc.description.references Wakui, Tetsuya, Motoki Yoshimura, and Ryohei Yokoyama. 2017. "Multiple-Feedback Control of Power Output and Platform Pitching Motion for a Floating Offshore Wind Turbine-Generator System." Energy 141: 563-78. https://www.sciencedirect.com/science/article/pii/S0360544217316195?via%3Dihub (November 9, 2018). https://doi.org/10.1016/j.energy.2017.09.100 es_ES
dc.description.references Wunsch, D.C., E.A. O'Hair, and M.G. Giesselmann. 2001. "Using Neural Networks to Estimate Wind Turbine Power Generation." IEEE Transactions on Energy Conversion 16(3): 276-82. http://www.scopus.com/inward/record.url?eid=2-s2.0-0035451837&partnerID=tZOtx3y1. https://doi.org/10.1109/60.937208 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem