- -

Control inteligente para mejorar el rendimiento de una plataforma semisumergible híbrida con aerogenerador y convertidores de oleaje: sistema de control borroso para la turbina

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Control inteligente para mejorar el rendimiento de una plataforma semisumergible híbrida con aerogenerador y convertidores de oleaje: sistema de control borroso para la turbina

Mostrar el registro completo del ítem

Mayorga Rubio, P.; Fernández Quijano, J.; Zambrana López, P.; Fernández Lozano, JJ.; García Cerezo, A.; Ortega Casanova, J. (2019). Control inteligente para mejorar el rendimiento de una plataforma semisumergible híbrida con aerogenerador y convertidores de oleaje: sistema de control borroso para la turbina. Revista Iberoamericana de Automática e Informática. 16(4):480-491. https://doi.org/10.4995/riai.2019.10972

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/126300

Ficheros en el ítem

Metadatos del ítem

Título: Control inteligente para mejorar el rendimiento de una plataforma semisumergible híbrida con aerogenerador y convertidores de oleaje: sistema de control borroso para la turbina
Otro titulo: Intelligent control for improving the efficiency of a hybrid semi-submersible platform with wind turbine and wave energy converters: fuzzy control system for the wind turbine
Autor: Mayorga Rubio, Pedro Fernández Quijano, Javier Zambrana López, Pablo Fernández Lozano, J. Jesús García Cerezo, Alfonso Ortega Casanova, Joaquín
Fecha difusión:
Resumen:
[EN] The use of sea wind energy is limited by the limited viable spaces on the onshore or in shallow waters. This makes the use of offshore semi-submersible platforms to be an attractive option, which additionally enables ...[+]


[ES] El aprovechamiento de la energía eólica marina está limitado por la saturación de los emplazamientos viables en tierra o aguas poco profundas. Esto hace que el empleo de plataformas semisumergibles mar adentro sea una ...[+]
Palabras clave: Técnicas de control inteligente , Control borroso y sistemas borrosos , Simulación de sistemas , Energías renovables , Control PID y variantes , Sostenibilidad y estabilidad medioambiental , Modelado, diseño e integración de sistemas mecatrónicos , Intelligent control , Fuzzy control and fuzzy systems , System Simulation , Renewable energy , PID control , Sustainability and environmental stability , Modelling, development and integration of mechatronic systems , Electric motors
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Revista Iberoamericana de Automática e Informática.. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.4995/riai.2019.10972
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/riai.2019.10972
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//RTC-2016-5712-3/
Agradecimientos:
Este trabajo ha sido realizado parcialmente gracias al apoyo del Ministerio de Economía y Competitividad del Gobierno de España, a través del proyecto ORPHEO (RTC-2016-5712-3) del Plan Estatal de Investigación ...[+]
Tipo: Artículo

References

Abdullah, M. A., A. H M Yatim, C. W. Tan, and R. Saidur. 2012. "A Review of Maximum Power Point Tracking Algorithms for Wind Energy Systems." Renewable and Sustainable Energy Reviews 16(5): 3220-27. http://dx.doi.org/10.1016/j.rser.2012.02.016.

Alexiadis, M. C., P. S. Dokopoulos, H. S. Sahsamanoglou, and I. M. Manousaridis. 1998. "Short-Term Forecasting of Wind Speed and Related Electrical Power." Solar Energy 63(1): 61-68. https://doi.org/10.1016/S0038-092X(98)00032-2

Babarit, A., and A.H. Clément. 2006. "Optimal Latching Control of a Wave Energy Device in Regular and Irregular Waves." Applied Ocean Research 28(2): 77-91. https://www.sciencedirect.com/science/article/pii/S0141118706000423?via%3Dihub (November 13, 2018). https://doi.org/10.1016/j.apor.2006.05.002 [+]
Abdullah, M. A., A. H M Yatim, C. W. Tan, and R. Saidur. 2012. "A Review of Maximum Power Point Tracking Algorithms for Wind Energy Systems." Renewable and Sustainable Energy Reviews 16(5): 3220-27. http://dx.doi.org/10.1016/j.rser.2012.02.016.

Alexiadis, M. C., P. S. Dokopoulos, H. S. Sahsamanoglou, and I. M. Manousaridis. 1998. "Short-Term Forecasting of Wind Speed and Related Electrical Power." Solar Energy 63(1): 61-68. https://doi.org/10.1016/S0038-092X(98)00032-2

Babarit, A., and A.H. Clément. 2006. "Optimal Latching Control of a Wave Energy Device in Regular and Irregular Waves." Applied Ocean Research 28(2): 77-91. https://www.sciencedirect.com/science/article/pii/S0141118706000423?via%3Dihub (November 13, 2018). https://doi.org/10.1016/j.apor.2006.05.002

Babarit, Aurélien, Michel Guglielmi, and Alain H. Clément. 2009. "Declutching Control of a Wave Energy Converter." Ocean Engineering 36(12-13): 1015-24. https://www.sciencedirect.com/science/article/pii/S0029801809001115?via%3Dihub (November 13, 2018). https://doi.org/10.1016/j.oceaneng.2009.05.006

Barbounis, T G, J B Theocharis, M C Alexiadis, and P S Dokopoulos.2006. "Long-Term Wind Speed and Power Forecasting Using Local Recurrent Neural Network Models." IEEE Transactions on Energy Conversion 21(1): 273-84. https://doi.org/10.1109/TEC.2005.847954

Brekken, T. K. A. 2011. "On Model Predictive Control for a Point Absorber Wave Energy Converter." In 2011 IEEE Trondheim PowerTech, IEEE, 1-8. http://ieeexplore.ieee.org/document/6019367/ (November 13, 2018). Brekken, T. K. A. 2011. "On Model Predictive Control for a Point Absorber Wave Energy Converter." In 2011 IEEE Trondheim PowerTech, IEEE, 1-8. http://ieeexplore.ieee.org/document/6019367/ (November 13, 2018).

Budar, K., and J. Falnes. 1975. "A Resonant Point Absorber of Ocean-Wave Power." Nature 256(5517): 478-79. http://www.nature.com/doifinder/10.1038/256478a0 (November 13, 2018). https://doi.org/10.1038/256478a0

Budar, K., and J. Falnes. 1975. "A Resonant Point Absorber of Ocean-Wave Power." Nature 256(5517): 478-79. http://www.nature.com/doifinder/10.1038/256478a0 (November 13, 2018).

Cárdenas, Roberto, and Rubén Peña. 2004. "Sensorless Vector Control of Induction Machines for Variable-Speed Wind Energy Applications." IEEE Transactions on Energy Conversion. https://doi.org/10.1109/TEC.2003.821863

Castro-Santos, Laura, Almudena Filgueira-Vizoso, Luis Carral-Couce, and José Ángel Fraguela Formoso. 2016. "Economic Feasibility of Floating Offshore Wind Farms." Energy 112: 868-82. https://www.sciencedirect.com/science/article/pii/S0360544216309094?via%3Dihub (November 9, 2018). https://doi.org/10.1016/j.energy.2016.06.135

Cheng, Ming, and Ying Zhu. 2014. "The State of the Art of Wind Energy Conversion Systems and Technologies: A Review." Energy Conversion and Management 88: 332-47. https://doi.org/10.1016/j.enconman.2014.08.037

Costa, Alexandre et al. 2008. "A Review on the Young History of the Wind Power Short-Term Prediction." Renewable and Sustainable Energy Reviews 12(6): 1725-44. https://doi.org/10.1016/j.rser.2007.01.015

Damousis, Ioannis G., Minas C. Alexiadis, John B. Theocharis, and Petros S. Dokopoulos. 2004. "A Fuzzy Model for Wind Speed Prediction and Power Generation in Wind Parks Using Spatial Correlation." IEEE Transactions on Energy Conversion. https://doi.org/10.1109/TEC.2003.821865

Ekinci, Firat, Tuǧçe Demirdelen, and Mehmet Bilgili. 2017. "Modelling of Wind Turbine Power Output by Using ANNs and ANFIS Techniques." In 7th International Conference on Innovative Computing Technology, INTECH 2017,. https://doi.org/10.1109/INTECH.2017.8102425

Falnes, Johannes. 2002. Ocean Waves and Oscillating Systems. Cambridge: Cambridge University Press. http://ebooks.cambridge.org/ref/id/CBO9780511754630 (November 9, 2018). https://doi.org/10.1017/CBO9780511754630

Farfán, Roberto F., Carlos A. Cadena, and Luis T. Villa. 2015. "Experiencia En El Uso de La Lógica Difusa Para El Control Del Seguimiento Del Punto de Máxima Potencia En Convertidores Para Módulos Fotovoltaicos." Revista Iberoamericana de Automática e Informática Industrial RIAI 12(2): 208-17. http://linkinghub.elsevier.com/retrieve/pii/S1697791215000102. https://doi.org/10.1016/j.riai.2015.03.004

Farhat, Maissa et al. 2015. "Diseño e Implementación de Un Sistema de Control Estable Basado En Lógica Borrosa Para Optimizar El Rendimiento de Un Sistema de Generación Fotovoltaico." RIAI - Revista Iberoamericana de Automatica e Informatica Industrial 12(4): 476-87. https://doi.org/10.1016/j.riai.2015.07.006

Garcia, Mari Cruz, Miguel A. Sanz-Bobi, and Javier del Pico. 2006. "SIMAP: Intelligent System for Predictive Maintenance. Application to the Health Condition Monitoring of a Windturbine Gearbox." Computers in Industry 57(6): 552-68. https://doi.org/10.1016/j.compind.2006.02.011

González-González, Asier et al. 2014. "Pitch Based Wind Turbine Intelligent Speed Setpoint Adjustment Algorithms." Energies 7(6): 3793-3809. http://www.mdpi.com/1996-1073/7/6/3793 (November 9, 2018). https://doi.org/10.3390/en7063793

IEC. 2009. European Committee for Electrotechnical Standardization Wind Turbines - Part 3: Design Requirements for Offshore Wind Turbines.

IRENA. 2017. Irena Renewable Energy Capacity Statistics 2017.

Jonkman, J., S. Butterfield, W. Musial, and G. Scott. 2009. "Definition of a 5-MW Reference Wind Turbine for Offshore System Development." (February). http://www.osti.gov/servlets/purl/947422-nhrlni/. https://doi.org/10.2172/947422

Kariniotakis, G. N., G. S. Stavrakakis, and E. F. and Nogaret. 1996. "Wind Power Forecasting Using Advanced Neural Networks Models." IEEE Transactions on Energy Conversion 11(4): 762-67. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=556376. https://doi.org/10.1109/60.556376

Kaur, Tarlochan, Sanjay Kumar, and Ravi Segal. 2016. "Application of Artificial Neural Network for Short Term Wind Speed Forecasting." 2016 Biennial International Conference on Power and Energy Systems: Towards Sustainable Energy (PESTSE): 1-5. http://ieeexplore.ieee.org/document/7516458/. https://doi.org/10.1109/PESTSE.2016.7516458

Kim, Yun Su, Il Yop Chung, and Seung Il Moon. 2015. "Tuning of the PI Controller Parameters of a PMSG Wind Turbine to Improve Control Performance under Various Wind Speeds." Energies 8(2): 1406-25. https://doi.org/10.3390/en8021406

Lasheen, Ahmed, and Abdel Latif Elshafei. 2016. "Wind-Turbine Collective-Pitch Control via a Fuzzy Predictive Algorithm." Renewable Energy. https://doi.org/10.1016/j.renene.2015.10.030

Leung, Dennis Y C, and Yuan Yang. 2012. "Wind Energy Development and Its Environmental Impact: A Review." Renewable and Sustainable Energy Reviews 16(1): 1031-39. http://dx.doi.org/10.1016/j.rser.2011.09.024.

Li, Gong, and Jing Shi. 2010. "On Comparing Three Artificial Neural Networks for Wind Speed Forecasting." Applied Energy 87(7): 2313-20. https://doi.org/10.1016/j.apenergy.2009.12.013

Lin, Whei-Min, and Chih-Ming Hong. 2010. "Intelligent Approach to Maximum Power Point Tracking Control Strategy for Variable-Speed Wind Turbine Generation System." Energy 35(6): 2440-47. http://linkinghub.elsevier.com/retrieve/pii/S0360544210000964. https://doi.org/10.1016/j.energy.2010.02.033

Pérez de la Portilla, Marina, Amable López Piñeiro, José Andrés Somolinos Sánchez, and Rafael Morales Herrera. 2017. "Modelado Dinámico y Control de Un Dispositivo Sumergido Provisto de Actuadores Hidrostáticos." Revista Iberoamericana de Automática e Informática industrial 15(1): 12. https://polipapers.upv.es/index.php/RIAI/article/view/8824 (February 21, 2019). https://doi.org/10.4995/riai.2017.8824

Pucci, Marcello, and Maurizio Cirrincione. 2011. "Neural MPPT Control of Wind Generators with Induction Machines without Speed Sensors." IEEE Transactions on Industrial Electronics 58(1): 37-47. https://doi.org/10.1109/TIE.2010.2043043

Red Eléctrica de España. 2017. El Sistema Eléctrico Español.

Sahin, Ahmet Duran. 2004. "Progress and Recent Trends in Wind Energy." Progress in Energy and Combustion Science 30(5): 501-43. https://doi.org/10.1016/j.pecs.2004.04.001

Santos, M. 2011. "Un Enfoque Aplicado Del Control Inteligente." Revista Iberoamericana de Automática e Informática Industrial RIAI 8(4): 283-96. https://www.sciencedirect.com/science/article/pii/S1697791211000501 (November 9, 2018). https://doi.org/10.1016/j.riai.2011.09.016

Shahmaleki, Pourya. 2018. "Enhancing Wind Turbine's Performance Using Fuzzy Pitch and Torque Controllers." In World Automation Congress Proceedings. https://doi.org/10.23919/WAC.2018.8430410

Simoes, M G, B K Bose, and R J Spiegel. 1997. "Fuzzy Logic Based Intelligent Control of a Variable Speed Cage Machine Wind Generation System." Power Electronics, IEEE Transactions on 12(1): 87-95. https://doi.org/10.1109/63.554173

Soman, S S, H Zareipour, O Malik, and P Mandal. 2010. "A Review of Wind Power and Wind Speed Forecasting Methods with Different Time Horizons." North American Power Symposium (NAPS): 1-8. https://doi.org/10.1109/NAPS.2010.5619586

Wakui, Tetsuya, Motoki Yoshimura, and Ryohei Yokoyama. 2017. "Multiple-Feedback Control of Power Output and Platform Pitching Motion for a Floating Offshore Wind Turbine-Generator System." Energy 141: 563-78. https://www.sciencedirect.com/science/article/pii/S0360544217316195?via%3Dihub (November 9, 2018). https://doi.org/10.1016/j.energy.2017.09.100

Wunsch, D.C., E.A. O'Hair, and M.G. Giesselmann. 2001. "Using Neural Networks to Estimate Wind Turbine Power Generation." IEEE Transactions on Energy Conversion 16(3): 276-82. http://www.scopus.com/inward/record.url?eid=2-s2.0-0035451837&partnerID=tZOtx3y1. https://doi.org/10.1109/60.937208

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem