- -

Nano selenium treatment effects on thyroid hormones, immunity and antioxidant status in rabbits

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Nano selenium treatment effects on thyroid hormones, immunity and antioxidant status in rabbits

Mostrar el registro completo del ítem

Eid, SY.; El-Zaher, HM.; Emara, SS.; Farid, OA.; Michael, MI. (2019). Nano selenium treatment effects on thyroid hormones, immunity and antioxidant status in rabbits. World Rabbit Science. 27(2):93-100. https://doi.org/10.4995/wrs.2019.11251

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/127019

Ficheros en el ítem

Metadatos del ítem

Título: Nano selenium treatment effects on thyroid hormones, immunity and antioxidant status in rabbits
Autor: Eid, Sherif Yousif El-Zaher, Hussein Mustafa Emara, Sana Sayed Farid, Omar Abdel-Hamed Michael, Michael Ibrahim
Fecha difusión:
Resumen:
[EN] The present study was conducted to compare the effect of Nano-Selenium (Nano-Se) and sodium selenite (SSe) on antioxidant enzyme activity, immunity and thyroid activity of growing New Zealand White (NZW) rabbits. In ...[+]
Palabras clave: Nano-selenium , Sodium selenite , Thyroid activity , Antioxidant enzymes , Rabbits
Derechos de uso: Reserva de todos los derechos
Fuente:
World Rabbit Science. (issn: 1257-5011 ) (eissn: 1989-8886 )
DOI: 10.4995/wrs.2019.11251
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/wrs.2019.11251
Tipo: Artículo

References

Abd-Allah S., Hashem K.S. 2015. Selenium nanoparticles increase the testicular antioxidant activity and spermatogenesis in male rats as compared to ordinary selenium. Int. J. Adv. Res., 3: 792-802. https://doi.org/10.22038/ijbms.2018.26023.6397

Abu-Qare A., Abou-Donia, M. 2000. Increased 8-hydroxy-2'- deoxyguanosine, a biomarker of oxidative DNA damage in rat urine following a single dermal dose of DEET (N, N-diethylm-toluamide), and permethrin, alone and in combination. Toxicol. Lett., 117: 151-60. https://doi.org/10.1016/S0378-4274(00)00257-5

AOAC. 2000. Official Methods of Analysis of AOAC International, Gaithersburg MA, USA. Association of Official Analytical chemist. [+]
Abd-Allah S., Hashem K.S. 2015. Selenium nanoparticles increase the testicular antioxidant activity and spermatogenesis in male rats as compared to ordinary selenium. Int. J. Adv. Res., 3: 792-802. https://doi.org/10.22038/ijbms.2018.26023.6397

Abu-Qare A., Abou-Donia, M. 2000. Increased 8-hydroxy-2'- deoxyguanosine, a biomarker of oxidative DNA damage in rat urine following a single dermal dose of DEET (N, N-diethylm-toluamide), and permethrin, alone and in combination. Toxicol. Lett., 117: 151-60. https://doi.org/10.1016/S0378-4274(00)00257-5

AOAC. 2000. Official Methods of Analysis of AOAC International, Gaithersburg MA, USA. Association of Official Analytical chemist.

Aurthor J.R., Beckett G.J. 1999. Thyroid function. Br. Med. Bull. 55: 658-668.

Awadeh F.T., Kincaid J.R., Johnson K.A. 1998. Effect of level and source of dietary selenium on concentrations of thyroid hormones and immunoglobulins in beef cows and calves. J. Anim. Sci. 76: 1204-1215.

Bickhardt K., Ganterm M., Sallmann P. 1999. Investigation of the manifestation of vitamin E and selenium deficiency in sheep and goats. Dtsch. Tierarztl. Wochenschr., 106: 242-247.

Changguang L., Jingui Z., Jinyu L. 2013. Effects of different sources and supplemental dosages of selenium on growth performance, immunity and thyroid hormones. China Feed, 21: 007

Dercksen D.P., Counotte G.H., Hazebroek M.K., Arts W., Van R.T. 2007. Selenium requirements of dairy goats. Tijdschr. Diergeneeskd, 132: 468-471.

Effraimidis G., Wiersinga M. 2014. Mechanisms in endocrinology: Autoimmune thyroid disease: Old and new players. Eur. J. Endocrinol., 170: 241-252.

Everett S.A., Dennis M.F., Tozer G.M., Prise V.E., Wardman P., Stratford M.R. 1995. Nitric oxide in biological fluids: analysis of nitrite and nitrate by high-performance ion chromatography. J. Chromatogr. A, 706: 37-42. https://doi.org/10.1016/0021-9673(95)00078-2.

Ganong W.F. 2001. The thyroid gland: In: Review of Medical Physiology. New York: Lange Medical Books/McGraw-Hill, 307-321.

Goldberg D.M., Spoone R.J. 1983. Assay of glutathione reductase In: Bergmeyen H.V. (ed). Methods of enzymatic analysis. Florida: Verlag Chemie Deerfield Beach, 258-265.

Habig W., Pabst M., Jakoby W. 1974. Glutathione S-transferases: the first enzymatic step in mercapturic acid formation. J. Biol. Chem. 249: 7130-7139.

Hao X., Ling Q., Hong F. 2014. Effects of dietary selenium on the pathological changes and oxidative stress in loach (Paramisgurnus dabryanus). Fish Physiol. Biochem., 40: 1313-1323. https://doi.org/10.1007/s10695-014-9926-7.

Holmgren A., Johansson C., Berndt C., Lonn M.E., Hudemann C., Lillig C.H. 2005. Thiol redox control via thioredoxin and glutaredoxin systems. Biochem. Soc. Trans., 33: 1375-1377.

Huang B., Zhang J., Hou J., Chen C. 2003. Free radical scavenging efficiency of nano-Se in vitro. Free Radic. Biol. Med., 35: 805-813. https://doi.org/10.1016/S0891-5849(03)00428-3

Jayatilleke E., Shaw S. 1993. A high-performance liquid chromatographic assay for reduced and oxidized glutathione in biological samples. Anal. Biochem., 214: 452-457.

Jia X., Li N., Chen J. 2005. A subchronic toxicity study of elemental Nano-Se in Sprague-Dawley rats. Life Sci., 76: 1989-2003. https://doi.org/10.1016/j.lfs.2004.09.026

Kasai H. 2002. Chemistry-based studies on oxidative DNA damage: formation, repair, and mutagenesis. Free Radic. Biol. Med., 33: 450-456.

Karatepe M. 2004. Simultaneous determination of ascorbic acid and free malondialdehyde in human serum by HPLC-UV. Chromatographic Line, 12: 362-365.

Köhrle J., Gartner R. 2009. Selenium and thyroid. Best. Pract. Res. Clin. En. 23: 815-827. https://doi.org/10.1016/j.beem.2009.08.002

Köhrle J., Jakob F., Contempré B., Dumont J.E. 2007. Selenium, the thyroid, and the endocrine system. Endocrinol. Rev., 26: 944-984. https://doi.org/10.1210/er.2001-0034

Koracevic D., Koracevic G., Djordjevic V., Andrejevic S., Cosic V. 2001. Method for the measurement of antioxidant activity in human fluids. J. Clin. Pathol., 54: 356-361.

Kumar N., Garg A.K., Mudgal V. 2008. Effect of different levels of selenium supplementation on growth rate, nutrient utilization, blood metabolic profile, and immune response in lambs. Biol. Trace Elem. Res., 126: 44-56.

Lawrence R.A., Burk R.F. 1976. Glutathione peroxidase activity in selenium deficient rat liver. Biochem. Biophys. Res. Commun.,71: 952-958.

Liao C.D, Hung WL, Jan K.C, Yeh A.I, Ho C.T, Hwang L.S. 2010. Nano/sub-microsized lignan glycosides from sesame meal exhibit higher transport and absorption efficiency in Caco-2 cell monolayer. Food Chem., 119: 896-902. http://doi.org/10.1016/j.foodchem.2009.07.056

Liu H.Y., Jiang Y., Luo W. 2006. A simple and rapid determination of ATP, ADP and AMP concentrations in pericarp tissue of litchi fruit by high performance liquid chromatography. Food Technol. Biotech., 44: 531-534.

Lodovici M., Casalini C., Briani C., Dolara P. 1997. Oxidative liver DNA damage in rats treated with pesticide mixtures. Toxicology, 117: 55-60.

Marin-Guzman J, Mahan D.C, Pate J.L. 2000. Effect of dietary selenium and vitamin E on spermatogenic development in boars. J. Anim .Sci., 78: 1536-1543.

Mohapatra P., Swain R. K., Mishra S. K., Behera T., Swain P., Mishra S. S., Behura N.C., Sabat S.C., Sethy K., Dhama K., Jayasankar P. 2014. Effects of dietary nano-selenium on tissue selenium deposition, antioxidant status and immune functions in layer chicks. Int. J. Pharmacol., 10: 160-167. https://doi.org/10.3923/ijp.2014.160.167

Montgomery J.B., Wichtel J.J., Wichtel M.G., McNiven M.A., McClure J.T., Markham F., Horohov D.W. 2012. Effects of selenium source on measures of selenium status and immune function in horses. Canad. J. Vet. Res., 76: 281-291.

Nasirpour M., Sadeghi A.A., Chamani M. 2017. Effects of nano-selenium on the liver antioxidant enzyme activity and immunoglobulins in male rats exposed to oxidative stress. J. Livestock Sci., 8: 81-87.

NRC. 1977. Nutrient requirements of rabbits. National Research Council, Natl. Acad. Press, Washington, DC, USA.

Paglia D.E., Valentine W.N. 1967. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med, 70: 158-169.

Papadoyannis L.N., Samanidou V.F., Nitsos C.C. 1999. Simultaneous determination of nitrite and nitrate in drinking water and human serum by high-performance anionexchange chromatography and UV detection. J. Liq. Chrom. Rel. Techno., 22: 2023-2041.

Qin S., Chen F., Guo Y., Huang B., Zhang J., Ma J. 2014. Effects of nano-selenium on kidney selenium contents, glutathione peroxidase activities and GPx-1 mRNA expression in mice. Adv. Mater. Res., 1051: 383-387. https://doi.org/10.4028/www.scientific.net/AMR.1051.383

Qin F., Chen F., Zhao F., Jin T., Ma J. 2016. Effects of Nanoselenium on Blood Biochemistry, Liver Antioxidant Activity and GPx-1 mRNA Expression in Rabbits. In: International Conference on Biomedical and Biological Engineering'. Atlantis Press. p.166-171. https://doi.org/10.2991/bbe-16.2016.28.

Rezaeian-Tabrizi M., Sadeghi A.A. 2017. Plasma antioxidant capacity, sexual and thyroid hormones levels, sperm quantity and quality parameters in stressed male rats received nanoparticle of selenium. Asian Pac. J. Reprod., 6: 29-34.

Sadeghian S., Kojouri G.A., Mohebbi A. 2012. Nanoparticles of selenium as species with stronger physiological effects in sheep in comparison with sodium selenite. Biol. Trace Elem. Res., 146: 302-308. https://doi.org/10.1007/s12011-011-9266-8

SAS. 2000. SAS/STAT User's Guide (Release 9.4). SAS Inst. Inc., Cary NC, USA.

Shi L.G., Yang R., Yue W., Xun W., Zhang C., You-she E., Lei S. 2010. Effect of elemental nano-selenium on semen quality, glutathione peroxidase activity, and testis ultrastructure in male Boer goats. Anim. Reprod. Sci., 118: 248-254. https://doi.org/10.1016/j.anireprosci.2009.10.003

Shi L.G., Xun W. J., Yue W. B., Zhang C. X., Ren Y.S., Liu Q., Wang Q., Shi L. 2011. Effect of sodium selenite, Se-yeast and nano-elemental selenium on growth performance, Se concentration and antioxidant status in growing male goats. Small Rumin. Rese., 96: 49-52. https://doi.org/10.1016/j.smallrumres.2010.11.005

Stadlober M., Sager M., Irgolic K. 2001. Identification and Quantification of Selenium Compounds in Sodium Selenite Supplemented Feeds by HPLC-ICP-MS. Die Bodenkultur., 5.

Sun Y., Oberley L.W., Li Y. 1988. A Simple Method for Clinical Assay of Superoxide Dismutase. Clin. Chem., 34: 479-500.

Wang H., Zhang J., Yu H. 2007. Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: Comparison with selenomethionine in mice. Free Radic. Biol. Med., 42: 1524-1533.

Zhang J.S., Gao X.Y., Zhang L.D., Bao Y.P. 2001. Biological effects of a nano red elemental selenium. Biofactors, 15: 27-38. https://doi.org/10.1002/biof.5520150103

Zhang J.S., Wang X.F., Xu T.W. 2008. Elemental selenium at nano size (Nano-Se) as a potential chemopreventive agent with reduced risk of selenium toxicity: Comparison with Semethylselenocysteine in mice. Toxicol. Sci. 101: 22-31. https://doi.org/10.1093/toxsci/kfm221

Zhou X., Wang Y. 2011. Influence of dietary nano elemental selenium on growth performance, tissue selenium distribution, meat quality, and glutathione peroxidase activity in Guangxi Yellow chicken. Poult. Sci., 90: 680-686. https://doi.org/10.3382/ps.2010-00977

Zhu, F., Zhu, L., Sun, J., Meng, X., Zou, L., 2010. Effects of dietary supplemental nano-se levels on liver selenium content and antioxidant abilities in hens. Chin. J. Vet. Sci., 30: 1537-1539.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem