Hottle, T. A., Bilec, M. M., & Landis, A. E. (2017). Biopolymer production and end of life comparisons using life cycle assessment. Resources, Conservation and Recycling, 122, 295-306. doi:10.1016/j.resconrec.2017.03.002
Zhu, Y., Romain, C., & Williams, C. K. (2016). Sustainable polymers from renewable resources. Nature, 540(7633), 354-362. doi:10.1038/nature21001
Gandini, A., & Lacerda, T. M. (2015). From monomers to polymers from renewable resources: Recent advances. Progress in Polymer Science, 48, 1-39. doi:10.1016/j.progpolymsci.2014.11.002
[+]
Hottle, T. A., Bilec, M. M., & Landis, A. E. (2017). Biopolymer production and end of life comparisons using life cycle assessment. Resources, Conservation and Recycling, 122, 295-306. doi:10.1016/j.resconrec.2017.03.002
Zhu, Y., Romain, C., & Williams, C. K. (2016). Sustainable polymers from renewable resources. Nature, 540(7633), 354-362. doi:10.1038/nature21001
Gandini, A., & Lacerda, T. M. (2015). From monomers to polymers from renewable resources: Recent advances. Progress in Polymer Science, 48, 1-39. doi:10.1016/j.progpolymsci.2014.11.002
Eichhorn, S. J., & Gandini, A. (2010). Materials from Renewable Resources. MRS Bulletin, 35(3), 187-193. doi:10.1557/mrs2010.650
Fombuena, V., L, S.-N., MD, S., D, J., & R, B. (2012). Study of the Properties of Thermoset Materials Derived from Epoxidized Soybean Oil and Protein Fillers. Journal of the American Oil Chemists’ Society, 90(3), 449-457. doi:10.1007/s11746-012-2171-2
Ferrero, B., Boronat, T., Moriana, R., Fenollar, O., & Balart, R. (2013). Green composites based on wheat gluten matrix and posidonia oceanica
waste fibers as reinforcements. Polymer Composites, 34(10), 1663-1669. doi:10.1002/pc.22567
Kondratowicz, F. Ł., & Ukielski, R. (2009). Synthesis and hydrolytic degradation of poly(ethylene succinate) and poly(ethylene terephthalate) copolymers. Polymer Degradation and Stability, 94(3), 375-382. doi:10.1016/j.polymdegradstab.2008.12.001
Mochizuki, M., & Hirami, M. (1997). Structural Effects on the Biodegradation of Aliphatic Polyesters. Polymers for Advanced Technologies, 8(4), 203-209. doi:10.1002/(sici)1099-1581(199704)8:4<203::aid-pat627>3.0.co;2-3
Debuissy, T., Pollet, E., & Avérous, L. (2016). Synthesis of potentially biobased copolyesters based on adipic acid and butanediols: Kinetic study between 1,4- and 2,3-butanediol and their influence on crystallization and thermal properties. Polymer, 99, 204-213. doi:10.1016/j.polymer.2016.07.022
Patel, M. K., Bechu, A., Villegas, J. D., Bergez-Lacoste, M., Yeung, K., Murphy, R., … Bryant, D. (2018). Second-generation bio-based plastics are becoming a reality - Non-renewable energy and greenhouse gas (GHG) balance of succinic acid-based plastic end products made from lignocellulosic biomass. Biofuels, Bioproducts and Biorefining, 12(3), 426-441. doi:10.1002/bbb.1849
Huang, Z., Qian, L., Yin, Q., Yu, N., Liu, T., & Tian, D. (2018). Biodegradability studies of poly(butylene succinate) composites filled with sugarcane rind fiber. Polymer Testing, 66, 319-326. doi:10.1016/j.polymertesting.2018.02.003
Puchalski, M., Szparaga, G., Biela, T., Gutowska, A., Sztajnowski, S., & Krucińska, I. (2018). Molecular and Supramolecular Changes in Polybutylene Succinate (PBS) and Polybutylene Succinate Adipate (PBSA) Copolymer during Degradation in Various Environmental Conditions. Polymers, 10(3), 251. doi:10.3390/polym10030251
Fujimaki, T. (1998). Processability and properties of aliphatic polyesters, ‘BIONOLLE’, synthesized by polycondensation reaction. Polymer Degradation and Stability, 59(1-3), 209-214. doi:10.1016/s0141-3910(97)00220-6
Číhal, P., Vopička, O., Pilnáček, K., Poustka, J., Friess, K., Hajšlová, J., … Dole, P. (2015). Aroma scalping characteristics of polybutylene succinate based films. Polymer Testing, 46, 108-115. doi:10.1016/j.polymertesting.2015.07.006
Siracusa, V., Lotti, N., Munari, A., & Dalla Rosa, M. (2015). Poly(butylene succinate) and poly(butylene succinate-co-adipate) for food packaging applications: Gas barrier properties after stressed treatments. Polymer Degradation and Stability, 119, 35-45. doi:10.1016/j.polymdegradstab.2015.04.026
Gigli, M., Fabbri, M., Lotti, N., Gamberini, R., Rimini, B., & Munari, A. (2016). Poly(butylene succinate)-based polyesters for biomedical applications: A review. European Polymer Journal, 75, 431-460. doi:10.1016/j.eurpolymj.2016.01.016
Cheng, H.-H., Xiong, J., Xie, Z.-N., Zhu, Y.-T., Liu, Y.-M., Wu, Z.-Y., … Guo, Z.-X. (2017). Thrombin-Loaded Poly(butylene succinate)-Based Electrospun Membranes for Rapid Hemostatic Application. Macromolecular Materials and Engineering, 303(2), 1700395. doi:10.1002/mame.201700395
Costa-Pinto, A. R., Martins, A. M., Castelhano-Carlos, M. J., Correlo, V. M., Sol, P. C., Longatto-Filho, A., … Neves, N. M. (2014). In vitro degradation and in vivo biocompatibility of chitosan–poly(butylene succinate) fiber mesh scaffolds. Journal of Bioactive and Compatible Polymers, 29(2), 137-151. doi:10.1177/0883911514521919
Wu, D., Lin, D., Zhang, J., Zhou, W., Zhang, M., Zhang, Y., … Lin, B. (2011). Selective Localization of Nanofillers: Effect on Morphology and Crystallization of PLA/PCL Blends. Macromolecular Chemistry and Physics, 212(6), 613-626. doi:10.1002/macp.201000579
Peponi, L., Sessini, V., Arrieta, M. P., Navarro-Baena, I., Sonseca, A., Dominici, F., … Kenny, J. M. (2018). Thermally-activated shape memory effect on biodegradable nanocomposites based on PLA/PCL blend reinforced with hydroxyapatite. Polymer Degradation and Stability, 151, 36-51. doi:10.1016/j.polymdegradstab.2018.02.019
Dicker, M. P. M., Duckworth, P. F., Baker, A. B., Francois, G., Hazzard, M. K., & Weaver, P. M. (2014). Green composites: A review of material attributes and complementary applications. Composites Part A: Applied Science and Manufacturing, 56, 280-289. doi:10.1016/j.compositesa.2013.10.014
Gurunathan, T., Mohanty, S., & Nayak, S. K. (2015). A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Composites Part A: Applied Science and Manufacturing, 77, 1-25. doi:10.1016/j.compositesa.2015.06.007
Lau, K., Hung, P., Zhu, M.-H., & Hui, D. (2018). Properties of natural fibre composites for structural engineering applications. Composites Part B: Engineering, 136, 222-233. doi:10.1016/j.compositesb.2017.10.038
Chun, K. S., Yeng, C. M., & Hussiensyah, S. (2016). Green coupling agent for agro-waste based thermoplastic composites. Polymer Composites, 39(7), 2441-2450. doi:10.1002/pc.24228
Panthapulakkal, S., & Sain, M. (2007). Agro-residue reinforced high-density polyethylene composites: Fiber characterization and analysis of composite properties. Composites Part A: Applied Science and Manufacturing, 38(6), 1445-1454. doi:10.1016/j.compositesa.2007.01.015
Väisänen, T., Haapala, A., Lappalainen, R., & Tomppo, L. (2016). Utilization of agricultural and forest industry waste and residues in natural fiber-polymer composites: A review. Waste Management, 54, 62-73. doi:10.1016/j.wasman.2016.04.037
Feng, Y.-H., Li, Y.-J., Xu, B.-P., Zhang, D.-W., Qu, J.-P., & He, H.-Z. (2013). Effect of fiber morphology on rheological properties of plant fiber reinforced poly(butylene succinate) composites. Composites Part B: Engineering, 44(1), 193-199. doi:10.1016/j.compositesb.2012.05.051
Terzopoulou, Z. N., Papageorgiou, G. Z., Papadopoulou, E., Athanassiadou, E., Reinders, M., & Bikiaris, D. N. (2014). Development and study of fully biodegradable composite materials based on poly(butylene succinate) and hemp fibers or hemp shives. Polymer Composites, 37(2), 407-421. doi:10.1002/pc.23194
Lee, J. M., Mohd Ishak, Z. A., Mat Taib, R., Law, T. T., & Ahmad Thirmizir, M. Z. (2012). Mechanical, Thermal and Water Absorption Properties of Kenaf-Fiber-Based Polypropylene and Poly(Butylene Succinate) Composites. Journal of Polymers and the Environment, 21(1), 293-302. doi:10.1007/s10924-012-0516-4
Tserki, V., Matzinos, P., & Panayiotou, C. (2006). Novel biodegradable composites based on treated lignocellulosic waste flour as filler. Part II. Development of biodegradable composites using treated and compatibilized waste flour. Composites Part A: Applied Science and Manufacturing, 37(9), 1231-1238. doi:10.1016/j.compositesa.2005.09.004
Yen, F.-S., Liao, H.-T., & Wu, C.-S. (2012). Characterization and biodegradability of agricultural residue-filled polyester ecocomposites. Polymer Bulletin, 70(5), 1613-1629. doi:10.1007/s00289-012-0862-3
El Mechtali, F. Z., Essabir, H., Nekhlaoui, S., Bensalah, M. O., Jawaid, M., Bouhfid, R., & Qaiss, A. (2015). Mechanical and thermal properties of polypropylene reinforced with almond shells particles: Impact of chemical treatments. Journal of Bionic Engineering, 12(3), 483-494. doi:10.1016/s1672-6529(14)60139-6
Essabir, H., Nekhlaoui, S., Malha, M., Bensalah, M. O., Arrakhiz, F. Z., Qaiss, A., & Bouhfid, R. (2013). Bio-composites based on polypropylene reinforced with Almond Shells particles: Mechanical and thermal properties. Materials & Design, 51, 225-230. doi:10.1016/j.matdes.2013.04.031
García, A. M., García, A. I., Cabezas, M. Á. L., & Reche, A. S. (2015). Study of the Influence of the Almond Variety in the Properties of Injected Parts with Biodegradable Almond Shell Based Masterbatches. Waste and Biomass Valorization, 6(3), 363-370. doi:10.1007/s12649-015-9351-x
Quiles-Carrillo, L., Montanes, N., Sammon, C., Balart, R., & Torres-Giner, S. (2018). Compatibilization of highly sustainable polylactide/almond shell flour composites by reactive extrusion with maleinized linseed oil. Industrial Crops and Products, 111, 878-888. doi:10.1016/j.indcrop.2017.10.062
Valdés García, A., Ramos Santonja, M., Sanahuja, A. B., & Selva, M. del C. G. (2014). Characterization and degradation characteristics of poly(ε-caprolactone)-based composites reinforced with almond skin residues. Polymer Degradation and Stability, 108, 269-279. doi:10.1016/j.polymdegradstab.2014.03.011
Liminana, P., Garcia-Sanoguera, D., Quiles-Carrillo, L., Balart, R., & Montanes, N. (2018). Development and characterization of environmentally friendly composites from poly(butylene succinate) (PBS) and almond shell flour with different compatibilizers. Composites Part B: Engineering, 144, 153-162. doi:10.1016/j.compositesb.2018.02.031
Fu, S.-Y., Feng, X.-Q., Lauke, B., & Mai, Y.-W. (2008). Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Composites Part B: Engineering, 39(6), 933-961. doi:10.1016/j.compositesb.2008.01.002
Kim, H.-S., Lee, B.-H., Lee, S., Kim, H.-J., & Dorgan, J. R. (2010). Enhanced interfacial adhesion, mechanical, and thermal properties of natural flour-filled biodegradable polymer bio-composites. Journal of Thermal Analysis and Calorimetry, 104(1), 331-338. doi:10.1007/s10973-010-1098-9
Li, Y., Zhang, J., Cheng, P., Shi, J., Yao, L., & Qiu, Y. (2014). Helium plasma treatment voltage effect on adhesion of ramie fibers to polybutylene succinate. Industrial Crops and Products, 61, 16-22. doi:10.1016/j.indcrop.2014.06.039
Sepe, R., Bollino, F., Boccarusso, L., & Caputo, F. (2018). Influence of chemical treatments on mechanical properties of hemp fiber reinforced composites. Composites Part B: Engineering, 133, 210-217. doi:10.1016/j.compositesb.2017.09.030
Shaniba, V., Sreejith, M. P., Aparna, K. B., Jinitha, T. V., & Purushothaman, E. (2017). Mechanical and thermal behavior of styrene butadiene rubber composites reinforced with silane-treated peanut shell powder. Polymer Bulletin, 74(10), 3977-3994. doi:10.1007/s00289-017-1931-4
Phua, Y. J., Chow, W. S., & Mohd Ishak, Z. A. (2013). Reactive processing of maleic anhydride-grafted poly(butylene succinate) and the compatibilizing effect on poly(butylene succinate) nanocomposites. Express Polymer Letters, 7(4), 340-354. doi:10.3144/expresspolymlett.2013.31
Zhu, N., Ye, M., Shi, D., & Chen, M. (2017). Reactive compatibilization of biodegradable poly(butylene succinate)/Spirulina microalgae composites. Macromolecular Research, 25(2), 165-171. doi:10.1007/s13233-017-5025-9
Chieng, B., Ibrahim, N., Then, Y., & Loo, Y. (2014). Epoxidized Vegetable Oils Plasticized Poly(lactic acid) Biocomposites: Mechanical, Thermal and Morphology Properties. Molecules, 19(10), 16024-16038. doi:10.3390/molecules191016024
Orue, A., Eceiza, A., & Arbelaiz, A. (2018). Preparation and characterization of poly(lactic acid) plasticized with vegetable oils and reinforced with sisal fibers. Industrial Crops and Products, 112, 170-180. doi:10.1016/j.indcrop.2017.11.011
Balart, J. F., Fombuena, V., Fenollar, O., Boronat, T., & Sánchez-Nacher, L. (2016). Processing and characterization of high environmental efficiency composites based on PLA and hazelnut shell flour (HSF) with biobased plasticizers derived from epoxidized linseed oil (ELO). Composites Part B: Engineering, 86, 168-177. doi:10.1016/j.compositesb.2015.09.063
Garcia-Garcia, D., Ferri, J. M., Montanes, N., Lopez-Martinez, J., & Balart, R. (2016). Plasticization effects of epoxidized vegetable oils on mechanical properties of poly(3-hydroxybutyrate). Polymer International, 65(10), 1157-1164. doi:10.1002/pi.5164
Sarwono, A., Man, Z., & Bustam, M. A. (2012). Blending of Epoxidised Palm Oil with Epoxy Resin: The Effect on Morphology, Thermal and Mechanical Properties. Journal of Polymers and the Environment, 20(2), 540-549. doi:10.1007/s10924-012-0418-5
Carbonell-Verdu, A., Garcia-Garcia, D., Dominici, F., Torre, L., Sanchez-Nacher, L., & Balart, R. (2017). PLA films with improved flexibility properties by using maleinized cottonseed oil. European Polymer Journal, 91, 248-259. doi:10.1016/j.eurpolymj.2017.04.013
Garcia-Garcia, D., Fenollar, O., Fombuena, V., Lopez-Martinez, J., & Balart, R. (2016). Improvement of Mechanical Ductile Properties of Poly(3-hydroxybutyrate) by Using Vegetable Oil Derivatives. Macromolecular Materials and Engineering, 302(2), 1600330. doi:10.1002/mame.201600330
Ferri, J. M., Garcia-Garcia, D., Sánchez-Nacher, L., Fenollar, O., & Balart, R. (2016). The effect of maleinized linseed oil (MLO) on mechanical performance of poly(lactic acid)-thermoplastic starch (PLA-TPS) blends. Carbohydrate Polymers, 147, 60-68. doi:10.1016/j.carbpol.2016.03.082
Ren, M., Song, J., Song, C., Zhang, H., Sun, X., Chen, Q., … Mo, Z. (2005). Crystallization kinetics and morphology of poly(butylene succinate-co-adipate). Journal of Polymer Science Part B: Polymer Physics, 43(22), 3231-3241. doi:10.1002/polb.20539
Ye, H.-M., Chen, X.-T., Liu, P., Wu, S.-Y., Jiang, Z., Xiong, B., & Xu, J. (2017). Preparation of Poly(butylene succinate) Crystals with Exceptionally High Melting Point and Crystallinity from Its Inclusion Complex. Macromolecules, 50(14), 5425-5433. doi:10.1021/acs.macromol.7b00656
Ostafi, M.-F., Dinulică, F., & Nicolescu, V.-N. (2016). Physical properties and structural features of common walnut (Juglans regia L.) wood: A case-study / Physikalische Eigenschaften und strukturelle Charakteristika des Holzes der Walnuß (Juglans regia L.): Eine Fallstudie. Die Bodenkultur: Journal of Land Management, Food and Environment, 67(2), 105-120. doi:10.1515/boku-2016-0010
Luís, R. C. G., Nisgoski, S., & Klitzke, R. J. (2018). Effect of Steaming on the Colorimetric Properties of Eucalyptus saligna Wood. Floresta e Ambiente, 25(1). doi:10.1590/2179-8087.101414
Lopes, J. de O., Garcia, R. A., Latorraca, J. V. de F., & Nascimento, A. M. do. (2014). Alteração da cor da madeira de teca por tratamento térmico. Floresta e Ambiente, 21(4), 521-534. doi:10.1590/2179-8087.013612
Yang, H.-S., Kim, H.-J., Park, H.-J., Lee, B.-J., & Hwang, T.-S. (2006). Water absorption behavior and mechanical properties of lignocellulosic filler–polyolefin bio-composites. Composite Structures, 72(4), 429-437. doi:10.1016/j.compstruct.2005.01.013
Xu, X., Zhang, M., Qiang, Q., Song, J., & He, W. (2015). Study on the performance of the acetylated bamboo fiber/PBS composites by molecular dynamics simulation. Journal of Composite Materials, 50(7), 995-1003. doi:10.1177/0021998315615690
Wu, C.-S., Hsu, Y.-C., Liao, H.-T., Yen, F.-S., Wang, C.-Y., & Hsu, C.-T. (2014). Characterization and biocompatibility of chestnut shell fiber-based composites with polyester. Journal of Applied Polymer Science, 131(17), n/a-n/a. doi:10.1002/app.40730
Saeed, U., Nawaz, M., & Al-Turaif, H. (2018). Wood flour reinforced biodegradable PBS/PLA composites. Journal of Composite Materials, 52(19), 2641-2650. doi:10.1177/0021998317752227
Luo, X., Li, J., Feng, J., Yang, T., & Lin, X. (2014). Mechanical and thermal performance of distillers grains filled poly(butylene succinate) composites. Materials & Design, 57, 195-200. doi:10.1016/j.matdes.2013.12.056
Ljungberg, N., & Wesslén, B. (2002). The effects of plasticizers on the dynamic mechanical and thermal properties of poly(lactic acid). Journal of Applied Polymer Science, 86(5), 1227-1234. doi:10.1002/app.11077
Quiles-Carrillo, L., Blanes-Martínez, M. M., Montanes, N., Fenollar, O., Torres-Giner, S., & Balart, R. (2018). Reactive toughening of injection-molded polylactide pieces using maleinized hemp seed oil. European Polymer Journal, 98, 402-410. doi:10.1016/j.eurpolymj.2017.11.039
Quiles-Carrillo, L., Montanes, N., Garcia-Garcia, D., Carbonell-Verdu, A., Balart, R., & Torres-Giner, S. (2018). Effect of different compatibilizers on injection-molded green composite pieces based on polylactide filled with almond shell flour. Composites Part B: Engineering, 147, 76-85. doi:10.1016/j.compositesb.2018.04.017
Calabia, B., Ninomiya, F., Yagi, H., Oishi, A., Taguchi, K., Kunioka, M., & Funabashi, M. (2013). Biodegradable Poly(butylene succinate) Composites Reinforced by Cotton Fiber with Silane Coupling Agent. Polymers, 5(1), 128-141. doi:10.3390/polym5010128
Frollini, E., Bartolucci, N., Sisti, L., & Celli, A. (2013). Poly(butylene succinate) reinforced with different lignocellulosic fibers. Industrial Crops and Products, 45, 160-169. doi:10.1016/j.indcrop.2012.12.013
Faulstich de Paiva, J. M., & Frollini, E. (2006). Unmodified and Modified Surface Sisal Fibers as Reinforcement of Phenolic and Lignophenolic Matrices Composites: Thermal Analyses of Fibers and Composites. Macromolecular Materials and Engineering, 291(4), 405-417. doi:10.1002/mame.200500334
Wang, G., Guo, B., Xu, J., & Li, R. (2011). Rheology, crystallization behaviors, and thermal stabilities of poly(butylene succinate)/pristine multiwalled carbon nanotube composites obtained by melt compounding. Journal of Applied Polymer Science, 121(1), 59-67. doi:10.1002/app.33222
Dumazert, L., Rasselet, D., Pang, B., Gallard, B., Kennouche, S., & Lopez-Cuesta, J.-M. (2017). Thermal stability and fire reaction of poly(butylene succinate) nanocomposites using natural clays and FR additives. Polymers for Advanced Technologies, 29(1), 69-83. doi:10.1002/pat.4090
Chen, G.-X., & Yoon, J.-S. (2005). Thermal stability of poly(l-lactide)/poly(butylene succinate)/clay nanocomposites. Polymer Degradation and Stability, 88(2), 206-212. doi:10.1016/j.polymdegradstab.2004.06.005
Ferrero, B., Fombuena, V., Fenollar, O., Boronat, T., & Balart, R. (2014). Development of natural fiber-reinforced plastics (NFRP) based on biobased polyethylene and waste fibers from Posidonia oceanica
seaweed. Polymer Composites, 36(8), 1378-1385. doi:10.1002/pc.23042
Fuqua, M. A., Chevali, V. S., & Ulven, C. A. (2012). Lignocellulosic byproducts as filler in polypropylene: Comprehensive study on the effects of compatibilization and loading. Journal of Applied Polymer Science, 127(2), 862-868. doi:10.1002/app.37820
[-]