- -

The Effect of Varying Almond Shell Flour (ASF) Loading in Composites with Poly(Butylene Succinate (PBS) Matrix Compatibilized with Maleinized Linseed Oil (MLO)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The Effect of Varying Almond Shell Flour (ASF) Loading in Composites with Poly(Butylene Succinate (PBS) Matrix Compatibilized with Maleinized Linseed Oil (MLO)

Mostrar el registro completo del ítem

Liminana, P.; Quiles-Carrillo, L.; Boronat, T.; Balart, R.; Montanes, N. (2018). The Effect of Varying Almond Shell Flour (ASF) Loading in Composites with Poly(Butylene Succinate (PBS) Matrix Compatibilized with Maleinized Linseed Oil (MLO). Materials. 11(11):1-17. https://doi.org/10.3390/ma11112179

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/137338

Ficheros en el ítem

Metadatos del ítem

Título: The Effect of Varying Almond Shell Flour (ASF) Loading in Composites with Poly(Butylene Succinate (PBS) Matrix Compatibilized with Maleinized Linseed Oil (MLO)
Autor: Liminana, Patricia Quiles-Carrillo, Luis Boronat, Teodomiro Balart, Rafael Montanes, Nestor
Entidad UPV: Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials
Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Fecha difusión:
Resumen:
[EN] In this work poly(butylene succinate) (PBS) composites with varying loads of almond shell flour (ASF) in the 10-50 wt % were manufactured by extrusion and subsequent injection molding thus showing the feasibility of ...[+]
Palabras clave: Green composites , Natural fillers , Poly(butylene succinate) (PBS) , Almond shell flour (ASF)
Derechos de uso: Reconocimiento (by)
Fuente:
Materials. (eissn: 1996-1944 )
DOI: 10.3390/ma11112179
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/ma11112179
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-84909-C2-2-R/ES/PROCESADO Y OPTIMIZACION DE MATERIALES AVANZADOS DERIVADOS DE ESTRUCTURAS PROTEICAS Y COMPONENTES LIGNOCELULOSICOS/
Agradecimientos:
This research was supported by the Ministry of Economy, Industry and Competitiveness (MINECO) program number MAT2017-84909-C2-2-R.
Tipo: Artículo

References

Hottle, T. A., Bilec, M. M., & Landis, A. E. (2017). Biopolymer production and end of life comparisons using life cycle assessment. Resources, Conservation and Recycling, 122, 295-306. doi:10.1016/j.resconrec.2017.03.002

Zhu, Y., Romain, C., & Williams, C. K. (2016). Sustainable polymers from renewable resources. Nature, 540(7633), 354-362. doi:10.1038/nature21001

Gandini, A., & Lacerda, T. M. (2015). From monomers to polymers from renewable resources: Recent advances. Progress in Polymer Science, 48, 1-39. doi:10.1016/j.progpolymsci.2014.11.002 [+]
Hottle, T. A., Bilec, M. M., & Landis, A. E. (2017). Biopolymer production and end of life comparisons using life cycle assessment. Resources, Conservation and Recycling, 122, 295-306. doi:10.1016/j.resconrec.2017.03.002

Zhu, Y., Romain, C., & Williams, C. K. (2016). Sustainable polymers from renewable resources. Nature, 540(7633), 354-362. doi:10.1038/nature21001

Gandini, A., & Lacerda, T. M. (2015). From monomers to polymers from renewable resources: Recent advances. Progress in Polymer Science, 48, 1-39. doi:10.1016/j.progpolymsci.2014.11.002

Eichhorn, S. J., & Gandini, A. (2010). Materials from Renewable Resources. MRS Bulletin, 35(3), 187-193. doi:10.1557/mrs2010.650

Fombuena, V., L, S.-N., MD, S., D, J., & R, B. (2012). Study of the Properties of Thermoset Materials Derived from Epoxidized Soybean Oil and Protein Fillers. Journal of the American Oil Chemists’ Society, 90(3), 449-457. doi:10.1007/s11746-012-2171-2

Ferrero, B., Boronat, T., Moriana, R., Fenollar, O., & Balart, R. (2013). Green composites based on wheat gluten matrix and posidonia oceanica waste fibers as reinforcements. Polymer Composites, 34(10), 1663-1669. doi:10.1002/pc.22567

Kondratowicz, F. Ł., & Ukielski, R. (2009). Synthesis and hydrolytic degradation of poly(ethylene succinate) and poly(ethylene terephthalate) copolymers. Polymer Degradation and Stability, 94(3), 375-382. doi:10.1016/j.polymdegradstab.2008.12.001

Mochizuki, M., & Hirami, M. (1997). Structural Effects on the Biodegradation of Aliphatic Polyesters. Polymers for Advanced Technologies, 8(4), 203-209. doi:10.1002/(sici)1099-1581(199704)8:4<203::aid-pat627>3.0.co;2-3

Debuissy, T., Pollet, E., & Avérous, L. (2016). Synthesis of potentially biobased copolyesters based on adipic acid and butanediols: Kinetic study between 1,4- and 2,3-butanediol and their influence on crystallization and thermal properties. Polymer, 99, 204-213. doi:10.1016/j.polymer.2016.07.022

Patel, M. K., Bechu, A., Villegas, J. D., Bergez-Lacoste, M., Yeung, K., Murphy, R., … Bryant, D. (2018). Second-generation bio-based plastics are becoming a reality - Non-renewable energy and greenhouse gas (GHG) balance of succinic acid-based plastic end products made from lignocellulosic biomass. Biofuels, Bioproducts and Biorefining, 12(3), 426-441. doi:10.1002/bbb.1849

Huang, Z., Qian, L., Yin, Q., Yu, N., Liu, T., & Tian, D. (2018). Biodegradability studies of poly(butylene succinate) composites filled with sugarcane rind fiber. Polymer Testing, 66, 319-326. doi:10.1016/j.polymertesting.2018.02.003

Puchalski, M., Szparaga, G., Biela, T., Gutowska, A., Sztajnowski, S., & Krucińska, I. (2018). Molecular and Supramolecular Changes in Polybutylene Succinate (PBS) and Polybutylene Succinate Adipate (PBSA) Copolymer during Degradation in Various Environmental Conditions. Polymers, 10(3), 251. doi:10.3390/polym10030251

Fujimaki, T. (1998). Processability and properties of aliphatic polyesters, ‘BIONOLLE’, synthesized by polycondensation reaction. Polymer Degradation and Stability, 59(1-3), 209-214. doi:10.1016/s0141-3910(97)00220-6

Číhal, P., Vopička, O., Pilnáček, K., Poustka, J., Friess, K., Hajšlová, J., … Dole, P. (2015). Aroma scalping characteristics of polybutylene succinate based films. Polymer Testing, 46, 108-115. doi:10.1016/j.polymertesting.2015.07.006

Siracusa, V., Lotti, N., Munari, A., & Dalla Rosa, M. (2015). Poly(butylene succinate) and poly(butylene succinate-co-adipate) for food packaging applications: Gas barrier properties after stressed treatments. Polymer Degradation and Stability, 119, 35-45. doi:10.1016/j.polymdegradstab.2015.04.026

Gigli, M., Fabbri, M., Lotti, N., Gamberini, R., Rimini, B., & Munari, A. (2016). Poly(butylene succinate)-based polyesters for biomedical applications: A review. European Polymer Journal, 75, 431-460. doi:10.1016/j.eurpolymj.2016.01.016

Cheng, H.-H., Xiong, J., Xie, Z.-N., Zhu, Y.-T., Liu, Y.-M., Wu, Z.-Y., … Guo, Z.-X. (2017). Thrombin-Loaded Poly(butylene succinate)-Based Electrospun Membranes for Rapid Hemostatic Application. Macromolecular Materials and Engineering, 303(2), 1700395. doi:10.1002/mame.201700395

Costa-Pinto, A. R., Martins, A. M., Castelhano-Carlos, M. J., Correlo, V. M., Sol, P. C., Longatto-Filho, A., … Neves, N. M. (2014). In vitro degradation and in vivo biocompatibility of chitosan–poly(butylene succinate) fiber mesh scaffolds. Journal of Bioactive and Compatible Polymers, 29(2), 137-151. doi:10.1177/0883911514521919

Wu, D., Lin, D., Zhang, J., Zhou, W., Zhang, M., Zhang, Y., … Lin, B. (2011). Selective Localization of Nanofillers: Effect on Morphology and Crystallization of PLA/PCL Blends. Macromolecular Chemistry and Physics, 212(6), 613-626. doi:10.1002/macp.201000579

Peponi, L., Sessini, V., Arrieta, M. P., Navarro-Baena, I., Sonseca, A., Dominici, F., … Kenny, J. M. (2018). Thermally-activated shape memory effect on biodegradable nanocomposites based on PLA/PCL blend reinforced with hydroxyapatite. Polymer Degradation and Stability, 151, 36-51. doi:10.1016/j.polymdegradstab.2018.02.019

Dicker, M. P. M., Duckworth, P. F., Baker, A. B., Francois, G., Hazzard, M. K., & Weaver, P. M. (2014). Green composites: A review of material attributes and complementary applications. Composites Part A: Applied Science and Manufacturing, 56, 280-289. doi:10.1016/j.compositesa.2013.10.014

Gurunathan, T., Mohanty, S., & Nayak, S. K. (2015). A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Composites Part A: Applied Science and Manufacturing, 77, 1-25. doi:10.1016/j.compositesa.2015.06.007

Lau, K., Hung, P., Zhu, M.-H., & Hui, D. (2018). Properties of natural fibre composites for structural engineering applications. Composites Part B: Engineering, 136, 222-233. doi:10.1016/j.compositesb.2017.10.038

Chun, K. S., Yeng, C. M., & Hussiensyah, S. (2016). Green coupling agent for agro-waste based thermoplastic composites. Polymer Composites, 39(7), 2441-2450. doi:10.1002/pc.24228

Panthapulakkal, S., & Sain, M. (2007). Agro-residue reinforced high-density polyethylene composites: Fiber characterization and analysis of composite properties. Composites Part A: Applied Science and Manufacturing, 38(6), 1445-1454. doi:10.1016/j.compositesa.2007.01.015

Väisänen, T., Haapala, A., Lappalainen, R., & Tomppo, L. (2016). Utilization of agricultural and forest industry waste and residues in natural fiber-polymer composites: A review. Waste Management, 54, 62-73. doi:10.1016/j.wasman.2016.04.037

Feng, Y.-H., Li, Y.-J., Xu, B.-P., Zhang, D.-W., Qu, J.-P., & He, H.-Z. (2013). Effect of fiber morphology on rheological properties of plant fiber reinforced poly(butylene succinate) composites. Composites Part B: Engineering, 44(1), 193-199. doi:10.1016/j.compositesb.2012.05.051

Terzopoulou, Z. N., Papageorgiou, G. Z., Papadopoulou, E., Athanassiadou, E., Reinders, M., & Bikiaris, D. N. (2014). Development and study of fully biodegradable composite materials based on poly(butylene succinate) and hemp fibers or hemp shives. Polymer Composites, 37(2), 407-421. doi:10.1002/pc.23194

Lee, J. M., Mohd Ishak, Z. A., Mat Taib, R., Law, T. T., & Ahmad Thirmizir, M. Z. (2012). Mechanical, Thermal and Water Absorption Properties of Kenaf-Fiber-Based Polypropylene and Poly(Butylene Succinate) Composites. Journal of Polymers and the Environment, 21(1), 293-302. doi:10.1007/s10924-012-0516-4

Tserki, V., Matzinos, P., & Panayiotou, C. (2006). Novel biodegradable composites based on treated lignocellulosic waste flour as filler. Part II. Development of biodegradable composites using treated and compatibilized waste flour. Composites Part A: Applied Science and Manufacturing, 37(9), 1231-1238. doi:10.1016/j.compositesa.2005.09.004

Yen, F.-S., Liao, H.-T., & Wu, C.-S. (2012). Characterization and biodegradability of agricultural residue-filled polyester ecocomposites. Polymer Bulletin, 70(5), 1613-1629. doi:10.1007/s00289-012-0862-3

El Mechtali, F. Z., Essabir, H., Nekhlaoui, S., Bensalah, M. O., Jawaid, M., Bouhfid, R., & Qaiss, A. (2015). Mechanical and thermal properties of polypropylene reinforced with almond shells particles: Impact of chemical treatments. Journal of Bionic Engineering, 12(3), 483-494. doi:10.1016/s1672-6529(14)60139-6

Essabir, H., Nekhlaoui, S., Malha, M., Bensalah, M. O., Arrakhiz, F. Z., Qaiss, A., & Bouhfid, R. (2013). Bio-composites based on polypropylene reinforced with Almond Shells particles: Mechanical and thermal properties. Materials & Design, 51, 225-230. doi:10.1016/j.matdes.2013.04.031

García, A. M., García, A. I., Cabezas, M. Á. L., & Reche, A. S. (2015). Study of the Influence of the Almond Variety in the Properties of Injected Parts with Biodegradable Almond Shell Based Masterbatches. Waste and Biomass Valorization, 6(3), 363-370. doi:10.1007/s12649-015-9351-x

Quiles-Carrillo, L., Montanes, N., Sammon, C., Balart, R., & Torres-Giner, S. (2018). Compatibilization of highly sustainable polylactide/almond shell flour composites by reactive extrusion with maleinized linseed oil. Industrial Crops and Products, 111, 878-888. doi:10.1016/j.indcrop.2017.10.062

Valdés García, A., Ramos Santonja, M., Sanahuja, A. B., & Selva, M. del C. G. (2014). Characterization and degradation characteristics of poly(ε-caprolactone)-based composites reinforced with almond skin residues. Polymer Degradation and Stability, 108, 269-279. doi:10.1016/j.polymdegradstab.2014.03.011

Liminana, P., Garcia-Sanoguera, D., Quiles-Carrillo, L., Balart, R., & Montanes, N. (2018). Development and characterization of environmentally friendly composites from poly(butylene succinate) (PBS) and almond shell flour with different compatibilizers. Composites Part B: Engineering, 144, 153-162. doi:10.1016/j.compositesb.2018.02.031

Fu, S.-Y., Feng, X.-Q., Lauke, B., & Mai, Y.-W. (2008). Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Composites Part B: Engineering, 39(6), 933-961. doi:10.1016/j.compositesb.2008.01.002

Kim, H.-S., Lee, B.-H., Lee, S., Kim, H.-J., & Dorgan, J. R. (2010). Enhanced interfacial adhesion, mechanical, and thermal properties of natural flour-filled biodegradable polymer bio-composites. Journal of Thermal Analysis and Calorimetry, 104(1), 331-338. doi:10.1007/s10973-010-1098-9

Li, Y., Zhang, J., Cheng, P., Shi, J., Yao, L., & Qiu, Y. (2014). Helium plasma treatment voltage effect on adhesion of ramie fibers to polybutylene succinate. Industrial Crops and Products, 61, 16-22. doi:10.1016/j.indcrop.2014.06.039

Sepe, R., Bollino, F., Boccarusso, L., & Caputo, F. (2018). Influence of chemical treatments on mechanical properties of hemp fiber reinforced composites. Composites Part B: Engineering, 133, 210-217. doi:10.1016/j.compositesb.2017.09.030

Shaniba, V., Sreejith, M. P., Aparna, K. B., Jinitha, T. V., & Purushothaman, E. (2017). Mechanical and thermal behavior of styrene butadiene rubber composites reinforced with silane-treated peanut shell powder. Polymer Bulletin, 74(10), 3977-3994. doi:10.1007/s00289-017-1931-4

Phua, Y. J., Chow, W. S., & Mohd Ishak, Z. A. (2013). Reactive processing of maleic anhydride-grafted poly(butylene succinate) and the compatibilizing effect on poly(butylene succinate) nanocomposites. Express Polymer Letters, 7(4), 340-354. doi:10.3144/expresspolymlett.2013.31

Zhu, N., Ye, M., Shi, D., & Chen, M. (2017). Reactive compatibilization of biodegradable poly(butylene succinate)/Spirulina microalgae composites. Macromolecular Research, 25(2), 165-171. doi:10.1007/s13233-017-5025-9

Chieng, B., Ibrahim, N., Then, Y., & Loo, Y. (2014). Epoxidized Vegetable Oils Plasticized Poly(lactic acid) Biocomposites: Mechanical, Thermal and Morphology Properties. Molecules, 19(10), 16024-16038. doi:10.3390/molecules191016024

Orue, A., Eceiza, A., & Arbelaiz, A. (2018). Preparation and characterization of poly(lactic acid) plasticized with vegetable oils and reinforced with sisal fibers. Industrial Crops and Products, 112, 170-180. doi:10.1016/j.indcrop.2017.11.011

Balart, J. F., Fombuena, V., Fenollar, O., Boronat, T., & Sánchez-Nacher, L. (2016). Processing and characterization of high environmental efficiency composites based on PLA and hazelnut shell flour (HSF) with biobased plasticizers derived from epoxidized linseed oil (ELO). Composites Part B: Engineering, 86, 168-177. doi:10.1016/j.compositesb.2015.09.063

Garcia-Garcia, D., Ferri, J. M., Montanes, N., Lopez-Martinez, J., & Balart, R. (2016). Plasticization effects of epoxidized vegetable oils on mechanical properties of poly(3-hydroxybutyrate). Polymer International, 65(10), 1157-1164. doi:10.1002/pi.5164

Sarwono, A., Man, Z., & Bustam, M. A. (2012). Blending of Epoxidised Palm Oil with Epoxy Resin: The Effect on Morphology, Thermal and Mechanical Properties. Journal of Polymers and the Environment, 20(2), 540-549. doi:10.1007/s10924-012-0418-5

Carbonell-Verdu, A., Garcia-Garcia, D., Dominici, F., Torre, L., Sanchez-Nacher, L., & Balart, R. (2017). PLA films with improved flexibility properties by using maleinized cottonseed oil. European Polymer Journal, 91, 248-259. doi:10.1016/j.eurpolymj.2017.04.013

Garcia-Garcia, D., Fenollar, O., Fombuena, V., Lopez-Martinez, J., & Balart, R. (2016). Improvement of Mechanical Ductile Properties of Poly(3-hydroxybutyrate) by Using Vegetable Oil Derivatives. Macromolecular Materials and Engineering, 302(2), 1600330. doi:10.1002/mame.201600330

Ferri, J. M., Garcia-Garcia, D., Sánchez-Nacher, L., Fenollar, O., & Balart, R. (2016). The effect of maleinized linseed oil (MLO) on mechanical performance of poly(lactic acid)-thermoplastic starch (PLA-TPS) blends. Carbohydrate Polymers, 147, 60-68. doi:10.1016/j.carbpol.2016.03.082

Ren, M., Song, J., Song, C., Zhang, H., Sun, X., Chen, Q., … Mo, Z. (2005). Crystallization kinetics and morphology of poly(butylene succinate-co-adipate). Journal of Polymer Science Part B: Polymer Physics, 43(22), 3231-3241. doi:10.1002/polb.20539

Ye, H.-M., Chen, X.-T., Liu, P., Wu, S.-Y., Jiang, Z., Xiong, B., & Xu, J. (2017). Preparation of Poly(butylene succinate) Crystals with Exceptionally High Melting Point and Crystallinity from Its Inclusion Complex. Macromolecules, 50(14), 5425-5433. doi:10.1021/acs.macromol.7b00656

Ostafi, M.-F., Dinulică, F., & Nicolescu, V.-N. (2016). Physical properties and structural features of common walnut (Juglans regia L.) wood: A case-study / Physikalische Eigenschaften und strukturelle Charakteristika des Holzes der Walnuß (Juglans regia L.): Eine Fallstudie. Die Bodenkultur: Journal of Land Management, Food and Environment, 67(2), 105-120. doi:10.1515/boku-2016-0010

Luís, R. C. G., Nisgoski, S., & Klitzke, R. J. (2018). Effect of Steaming on the Colorimetric Properties of Eucalyptus saligna Wood. Floresta e Ambiente, 25(1). doi:10.1590/2179-8087.101414

Lopes, J. de O., Garcia, R. A., Latorraca, J. V. de F., & Nascimento, A. M. do. (2014). Alteração da cor da madeira de teca por tratamento térmico. Floresta e Ambiente, 21(4), 521-534. doi:10.1590/2179-8087.013612

Yang, H.-S., Kim, H.-J., Park, H.-J., Lee, B.-J., & Hwang, T.-S. (2006). Water absorption behavior and mechanical properties of lignocellulosic filler–polyolefin bio-composites. Composite Structures, 72(4), 429-437. doi:10.1016/j.compstruct.2005.01.013

Xu, X., Zhang, M., Qiang, Q., Song, J., & He, W. (2015). Study on the performance of the acetylated bamboo fiber/PBS composites by molecular dynamics simulation. Journal of Composite Materials, 50(7), 995-1003. doi:10.1177/0021998315615690

Wu, C.-S., Hsu, Y.-C., Liao, H.-T., Yen, F.-S., Wang, C.-Y., & Hsu, C.-T. (2014). Characterization and biocompatibility of chestnut shell fiber-based composites with polyester. Journal of Applied Polymer Science, 131(17), n/a-n/a. doi:10.1002/app.40730

Saeed, U., Nawaz, M., & Al-Turaif, H. (2018). Wood flour reinforced biodegradable PBS/PLA composites. Journal of Composite Materials, 52(19), 2641-2650. doi:10.1177/0021998317752227

Luo, X., Li, J., Feng, J., Yang, T., & Lin, X. (2014). Mechanical and thermal performance of distillers grains filled poly(butylene succinate) composites. Materials & Design, 57, 195-200. doi:10.1016/j.matdes.2013.12.056

Ljungberg, N., & Wesslén, B. (2002). The effects of plasticizers on the dynamic mechanical and thermal properties of poly(lactic acid). Journal of Applied Polymer Science, 86(5), 1227-1234. doi:10.1002/app.11077

Quiles-Carrillo, L., Blanes-Martínez, M. M., Montanes, N., Fenollar, O., Torres-Giner, S., & Balart, R. (2018). Reactive toughening of injection-molded polylactide pieces using maleinized hemp seed oil. European Polymer Journal, 98, 402-410. doi:10.1016/j.eurpolymj.2017.11.039

Quiles-Carrillo, L., Montanes, N., Garcia-Garcia, D., Carbonell-Verdu, A., Balart, R., & Torres-Giner, S. (2018). Effect of different compatibilizers on injection-molded green composite pieces based on polylactide filled with almond shell flour. Composites Part B: Engineering, 147, 76-85. doi:10.1016/j.compositesb.2018.04.017

Calabia, B., Ninomiya, F., Yagi, H., Oishi, A., Taguchi, K., Kunioka, M., & Funabashi, M. (2013). Biodegradable Poly(butylene succinate) Composites Reinforced by Cotton Fiber with Silane Coupling Agent. Polymers, 5(1), 128-141. doi:10.3390/polym5010128

Frollini, E., Bartolucci, N., Sisti, L., & Celli, A. (2013). Poly(butylene succinate) reinforced with different lignocellulosic fibers. Industrial Crops and Products, 45, 160-169. doi:10.1016/j.indcrop.2012.12.013

Faulstich de Paiva, J. M., & Frollini, E. (2006). Unmodified and Modified Surface Sisal Fibers as Reinforcement of Phenolic and Lignophenolic Matrices Composites: Thermal Analyses of Fibers and Composites. Macromolecular Materials and Engineering, 291(4), 405-417. doi:10.1002/mame.200500334

Wang, G., Guo, B., Xu, J., & Li, R. (2011). Rheology, crystallization behaviors, and thermal stabilities of poly(butylene succinate)/pristine multiwalled carbon nanotube composites obtained by melt compounding. Journal of Applied Polymer Science, 121(1), 59-67. doi:10.1002/app.33222

Dumazert, L., Rasselet, D., Pang, B., Gallard, B., Kennouche, S., & Lopez-Cuesta, J.-M. (2017). Thermal stability and fire reaction of poly(butylene succinate) nanocomposites using natural clays and FR additives. Polymers for Advanced Technologies, 29(1), 69-83. doi:10.1002/pat.4090

Chen, G.-X., & Yoon, J.-S. (2005). Thermal stability of poly(l-lactide)/poly(butylene succinate)/clay nanocomposites. Polymer Degradation and Stability, 88(2), 206-212. doi:10.1016/j.polymdegradstab.2004.06.005

Ferrero, B., Fombuena, V., Fenollar, O., Boronat, T., & Balart, R. (2014). Development of natural fiber-reinforced plastics (NFRP) based on biobased polyethylene and waste fibers from Posidonia oceanica seaweed. Polymer Composites, 36(8), 1378-1385. doi:10.1002/pc.23042

Fuqua, M. A., Chevali, V. S., & Ulven, C. A. (2012). Lignocellulosic byproducts as filler in polypropylene: Comprehensive study on the effects of compatibilization and loading. Journal of Applied Polymer Science, 127(2), 862-868. doi:10.1002/app.37820

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem