- -

Optimization of Maleinized Linseed Oil Loading as a Biobased Compatibilizer in Poly(Butylene Succinate) Composites with Almond Shell Flour

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Optimization of Maleinized Linseed Oil Loading as a Biobased Compatibilizer in Poly(Butylene Succinate) Composites with Almond Shell Flour

Show full item record

Limiñana-Gregori, P.; Garcia-Sanoguera, D.; Quiles-Carrillo, L.; Balart, R.; Montanes, N. (2019). Optimization of Maleinized Linseed Oil Loading as a Biobased Compatibilizer in Poly(Butylene Succinate) Composites with Almond Shell Flour. Materials. 12(5):1-14. https://doi.org/10.3390/ma12050685

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/137339

Files in this item

Item Metadata

Title: Optimization of Maleinized Linseed Oil Loading as a Biobased Compatibilizer in Poly(Butylene Succinate) Composites with Almond Shell Flour
Author: Limiñana-Gregori, Patricia Garcia-Sanoguera, David Quiles-Carrillo, Luis Balart, Rafael Montanes, Nestor
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials
Issued date:
Abstract:
[EN] Green composites of poly(butylene succinate) (PBS) were manufactured with almond shell flour (ASF) by reactive compatibilization with maleinized linseed oil *MLO) by extrusion and subsequent injection molding. ASF was ...[+]
Subjects: Polymer-matrix composites (PMCs) , Mechanical properties , Thermomechanical , Electron microscopy , Compatibilizers
Copyrigths: Reconocimiento (by)
Source:
Materials. (eissn: 1996-1944 )
DOI: 10.3390/ma12050685
Publisher:
MDPI AG
Publisher version: https://doi.org/10.3390/ma12050685
Project ID:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-84909-C2-2-R/ES/PROCESADO Y OPTIMIZACION DE MATERIALES AVANZADOS DERIVADOS DE ESTRUCTURAS PROTEICAS Y COMPONENTES LIGNOCELULOSICOS/
GENERALITAT VALENCIANA/ACIF/2016/182
MECYD/FPU15/03812
Thanks:
This work was supported by the Ministry of Economy and Competitiveness (MINECO) grant number MAT2017-84909-C2-2-R. L.Q.-C. wants to thank Generalitat Valenciana (GV) for his FPI grant (ACIF/2016/182) and the Spanish Ministry ...[+]
Type: Artículo

References

Liminana, P., Garcia-Sanoguera, D., Quiles-Carrillo, L., Balart, R., & Montanes, N. (2018). Development and characterization of environmentally friendly composites from poly(butylene succinate) (PBS) and almond shell flour with different compatibilizers. Composites Part B: Engineering, 144, 153-162. doi:10.1016/j.compositesb.2018.02.031

Bechthold, I., Bretz, K., Kabasci, S., Kopitzky, R., & Springer, A. (2008). Succinic Acid: A New Platform Chemical for Biobased Polymers from Renewable Resources. Chemical Engineering & Technology, 31(5), 647-654. doi:10.1002/ceat.200800063

McKinlay, J. B., Vieille, C., & Zeikus, J. G. (2007). Prospects for a bio-based succinate industry. Applied Microbiology and Biotechnology, 76(4), 727-740. doi:10.1007/s00253-007-1057-y [+]
Liminana, P., Garcia-Sanoguera, D., Quiles-Carrillo, L., Balart, R., & Montanes, N. (2018). Development and characterization of environmentally friendly composites from poly(butylene succinate) (PBS) and almond shell flour with different compatibilizers. Composites Part B: Engineering, 144, 153-162. doi:10.1016/j.compositesb.2018.02.031

Bechthold, I., Bretz, K., Kabasci, S., Kopitzky, R., & Springer, A. (2008). Succinic Acid: A New Platform Chemical for Biobased Polymers from Renewable Resources. Chemical Engineering & Technology, 31(5), 647-654. doi:10.1002/ceat.200800063

McKinlay, J. B., Vieille, C., & Zeikus, J. G. (2007). Prospects for a bio-based succinate industry. Applied Microbiology and Biotechnology, 76(4), 727-740. doi:10.1007/s00253-007-1057-y

Bozell, J. J., & Petersen, G. R. (2010). Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s «Top 10» revisited. Green Chemistry, 12(4), 539. doi:10.1039/b922014c

Kim, H.-S., Yang, H.-S., & Kim, H.-J. (2005). Biodegradability and mechanical properties of agro-flour-filled polybutylene succinate biocomposites. Journal of Applied Polymer Science, 97(4), 1513-1521. doi:10.1002/app.21905

Siracusa, V., Lotti, N., Munari, A., & Dalla Rosa, M. (2015). Poly(butylene succinate) and poly(butylene succinate-co-adipate) for food packaging applications: Gas barrier properties after stressed treatments. Polymer Degradation and Stability, 119, 35-45. doi:10.1016/j.polymdegradstab.2015.04.026

Vytejčková, S., Vápenka, L., Hradecký, J., Dobiáš, J., Hajšlová, J., Loriot, C., … Poustka, J. (2017). Testing of polybutylene succinate based films for poultry meat packaging. Polymer Testing, 60, 357-364. doi:10.1016/j.polymertesting.2017.04.018

Hongsriphan, N., & Sanga, S. (2017). Antibacterial food packaging sheets prepared by coating chitosan on corona-treated extruded poly(lactic acid)/poly(butylene succinate) blends. Journal of Plastic Film & Sheeting, 34(2), 160-178. doi:10.1177/8756087917722585

Imre, B., & Pukánszky, B. (2013). Compatibilization in bio-based and biodegradable polymer blends. European Polymer Journal, 49(6), 1215-1233. doi:10.1016/j.eurpolymj.2013.01.019

Dorez, G., Taguet, A., Ferry, L., & Lopez-Cuesta, J. M. (2013). Thermal and fire behavior of natural fibers/PBS biocomposites. Polymer Degradation and Stability, 98(1), 87-95. doi:10.1016/j.polymdegradstab.2012.10.026

Frollini, E., Bartolucci, N., Sisti, L., & Celli, A. (2013). Poly(butylene succinate) reinforced with different lignocellulosic fibers. Industrial Crops and Products, 45, 160-169. doi:10.1016/j.indcrop.2012.12.013

Kurokawa, N., Kimura, S., & Hotta, A. (2017). Mechanical properties of poly(butylene succinate) composites with aligned cellulose‐acetate nanofibers. Journal of Applied Polymer Science, 135(24), 45429. doi:10.1002/app.45429

Terzopoulou, Z. N., Papageorgiou, G. Z., Papadopoulou, E., Athanassiadou, E., Reinders, M., & Bikiaris, D. N. (2014). Development and study of fully biodegradable composite materials based on poly(butylene succinate) and hemp fibers or hemp shives. Polymer Composites, 37(2), 407-421. doi:10.1002/pc.23194

Lee, H. Y., & Cho, D. (2017). Influence of Waste Fiber Content on the Thermal and Mechanical Properties of Waste Silk/Waste Wool/PBS Hybrid Biocomposites. Polymer Korea, 41(4), 719-726. doi:10.7317/pk.2017.41.4.719

Flores-Cano, J. V., Sánchez-Polo, M., Messoud, J., Velo-Gala, I., Ocampo-Pérez, R., & Rivera-Utrilla, J. (2016). Overall adsorption rate of metronidazole, dimetridazole and diatrizoate on activated carbons prepared from coffee residues and almond shells. Journal of Environmental Management, 169, 116-125. doi:10.1016/j.jenvman.2015.12.001

Loffredo, E., Castellana, G., & Senesi, N. (2013). Decontamination of a municipal landfill leachate from endocrine disruptors using a combined sorption/bioremoval approach. Environmental Science and Pollution Research, 21(4), 2654-2662. doi:10.1007/s11356-013-2202-z

Loffredo, E., Castellana, G., & Taskin, E. (2016). A Two-Step Approach to Eliminate Pesticides and Estrogens from a Wastewater and Reduce Its Phytotoxicity: Adsorption onto Plant-Derived Materials and Fungal Degradation. Water, Air, & Soil Pollution, 227(6). doi:10.1007/s11270-016-2883-2

Adánez-Rubio, I., Pérez-Astray, A., Mendiara, T., Izquierdo, M. T., Abad, A., Gayán, P., … Adánez, J. (2018). Chemical looping combustion of biomass: CLOU experiments with a Cu-Mn mixed oxide. Fuel Processing Technology, 172, 179-186. doi:10.1016/j.fuproc.2017.12.010

Cerone, N., & Zimbardi, F. (2018). Gasification of Agroresidues for Syngas Production. Energies, 11(5), 1280. doi:10.3390/en11051280

Safari, F., Javani, N., & Yumurtaci, Z. (2018). Hydrogen production via supercritical water gasification of almond shell over algal and agricultural hydrochars as catalysts. International Journal of Hydrogen Energy, 43(2), 1071-1080. doi:10.1016/j.ijhydene.2017.05.102

Essabir, H., Nekhlaoui, S., Malha, M., Bensalah, M. O., Arrakhiz, F. Z., Qaiss, A., & Bouhfid, R. (2013). Bio-composites based on polypropylene reinforced with Almond Shells particles: Mechanical and thermal properties. Materials & Design, 51, 225-230. doi:10.1016/j.matdes.2013.04.031

El Mechtali, F. Z., Essabir, H., Nekhlaoui, S., Bensalah, M. O., Jawaid, M., Bouhfid, R., & Qaiss, A. (2015). Mechanical and thermal properties of polypropylene reinforced with almond shells particles: Impact of chemical treatments. Journal of Bionic Engineering, 12(3), 483-494. doi:10.1016/s1672-6529(14)60139-6

Quiles-Carrillo, L., Montanes, N., Sammon, C., Balart, R., & Torres-Giner, S. (2018). Compatibilization of highly sustainable polylactide/almond shell flour composites by reactive extrusion with maleinized linseed oil. Industrial Crops and Products, 111, 878-888. doi:10.1016/j.indcrop.2017.10.062

Caballero, J. A., Conesa, J. A., Font, R., & Marcilla, A. (1997). Pyrolysis kinetics of almond shells and olive stones considering their organic fractions. Journal of Analytical and Applied Pyrolysis, 42(2), 159-175. doi:10.1016/s0165-2370(97)00015-6

Faludi, G., Dora, G., Imre, B., Renner, K., Móczó, J., & Pukánszky, B. (2013). PLA/lignocellulosic fiber composites: Particle characteristics, interfacial adhesion, and failure mechanism. Journal of Applied Polymer Science, 131(4), n/a-n/a. doi:10.1002/app.39902

García-García, D., Carbonell, A., Samper, M. D., García-Sanoguera, D., & Balart, R. (2015). Green composites based on polypropylene matrix and hydrophobized spend coffee ground (SCG) powder. Composites Part B: Engineering, 78, 256-265. doi:10.1016/j.compositesb.2015.03.080

Kabir, M. M., Wang, H., Lau, K. T., & Cardona, F. (2012). Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Composites Part B: Engineering, 43(7), 2883-2892. doi:10.1016/j.compositesb.2012.04.053

Wang, F., Yang, M., Zhou, S., Ran, S., & Zhang, J. (2017). Effect of fiber volume fraction on the thermal and mechanical behavior of polylactide-based composites incorporating bamboo fibers. Journal of Applied Polymer Science, 135(15), 46148. doi:10.1002/app.46148

Nam, T. H., Ogihara, S., Tung, N. H., & Kobayashi, S. (2011). Effect of alkali treatment on interfacial and mechanical properties of coir fiber reinforced poly(butylene succinate) biodegradable composites. Composites Part B: Engineering, 42(6), 1648-1656. doi:10.1016/j.compositesb.2011.04.001

Sinha, A. K., Narang, H. K., & Bhattacharya, S. (2017). Mechanical properties of natural fibre polymer composites. Journal of Polymer Engineering, 37(9), 879-895. doi:10.1515/polyeng-2016-0362

Balart, J. F., Fombuena, V., Fenollar, O., Boronat, T., & Sánchez-Nacher, L. (2016). Processing and characterization of high environmental efficiency composites based on PLA and hazelnut shell flour (HSF) with biobased plasticizers derived from epoxidized linseed oil (ELO). Composites Part B: Engineering, 86, 168-177. doi:10.1016/j.compositesb.2015.09.063

Karmarkar, A., Chauhan, S. S., Modak, J. M., & Chanda, M. (2007). Mechanical properties of wood–fiber reinforced polypropylene composites: Effect of a novel compatibilizer with isocyanate functional group. Composites Part A: Applied Science and Manufacturing, 38(2), 227-233. doi:10.1016/j.compositesa.2006.05.005

Chieng, B., Ibrahim, N., Then, Y., & Loo, Y. (2014). Epoxidized Vegetable Oils Plasticized Poly(lactic acid) Biocomposites: Mechanical, Thermal and Morphology Properties. Molecules, 19(10), 16024-16038. doi:10.3390/molecules191016024

Garcia-Garcia, D., Fenollar, O., Fombuena, V., Lopez-Martinez, J., & Balart, R. (2016). Improvement of Mechanical Ductile Properties of Poly(3-hydroxybutyrate) by Using Vegetable Oil Derivatives. Macromolecular Materials and Engineering, 302(2), 1600330. doi:10.1002/mame.201600330

Samper, M. D., Petrucci, R., Sanchez-Nacher, L., Balart, R., & Kenny, J. M. (2015). Properties of composite laminates based on basalt fibers with epoxidized vegetable oils. Materials & Design, 72, 9-15. doi:10.1016/j.matdes.2015.02.002

Zhao, Y., Qu, J., Feng, Y., Wu, Z., Chen, F., & Tang, H. (2011). Mechanical and thermal properties of epoxidized soybean oil plasticized polybutylene succinate blends. Polymers for Advanced Technologies, 23(3), 632-638. doi:10.1002/pat.1937

Sarwono, A., Man, Z., & Bustam, M. A. (2012). Blending of Epoxidised Palm Oil with Epoxy Resin: The Effect on Morphology, Thermal and Mechanical Properties. Journal of Polymers and the Environment, 20(2), 540-549. doi:10.1007/s10924-012-0418-5

Park, S.-J., Jin, F.-L., & Lee, J.-R. (2004). Effect of Biodegradable Epoxidized Castor Oil on Physicochemical and Mechanical Properties of Epoxy Resins. Macromolecular Chemistry and Physics, 205(15), 2048-2054. doi:10.1002/macp.200400214

Huang, K., Zhang, P., Zhang, J., Li, S., Li, M., Xia, J., & Zhou, Y. (2013). Preparation of biobased epoxies using tung oil fatty acid-derived C21 diacid and C22 triacid and study of epoxy properties. Green Chemistry, 15(9), 2466. doi:10.1039/c3gc40622a

Ferri, J. M., Garcia-Garcia, D., Sánchez-Nacher, L., Fenollar, O., & Balart, R. (2016). The effect of maleinized linseed oil (MLO) on mechanical performance of poly(lactic acid)-thermoplastic starch (PLA-TPS) blends. Carbohydrate Polymers, 147, 60-68. doi:10.1016/j.carbpol.2016.03.082

Garcia-Campo, M., Quiles-Carrillo, L., Masia, J., Reig-Pérez, M., Montanes, N., & Balart, R. (2017). Environmentally Friendly Compatibilizers from Soybean Oil for Ternary Blends of Poly(lactic acid)-PLA, Poly(ε-caprolactone)-PCL and Poly(3-hydroxybutyrate)-PHB. Materials, 10(11), 1339. doi:10.3390/ma10111339

Carbonell-Verdu, A., Ferri, J. M., Dominici, F., Boronat, T., Sanchez-Nacher, L., Balart, R., & Torre, L. (2018). Manufacturing and compatibilization of PLA/PBAT binary blends by cottonseed oil-based derivatives. Express Polymer Letters, 12(9), 808-823. doi:10.3144/expresspolymlett.2018.69

Carbonell-Verdu, A., Garcia-Garcia, D., Dominici, F., Torre, L., Sanchez-Nacher, L., & Balart, R. (2017). PLA films with improved flexibility properties by using maleinized cottonseed oil. European Polymer Journal, 91, 248-259. doi:10.1016/j.eurpolymj.2017.04.013

Quiles-Carrillo, L., Blanes-Martínez, M. M., Montanes, N., Fenollar, O., Torres-Giner, S., & Balart, R. (2018). Reactive toughening of injection-molded polylactide pieces using maleinized hemp seed oil. European Polymer Journal, 98, 402-410. doi:10.1016/j.eurpolymj.2017.11.039

Ren, M., Song, J., Song, C., Zhang, H., Sun, X., Chen, Q., … Mo, Z. (2005). Crystallization kinetics and morphology of poly(butylene succinate-co-adipate). Journal of Polymer Science Part B: Polymer Physics, 43(22), 3231-3241. doi:10.1002/polb.20539

Ferri, J. M., Garcia-Garcia, D., Montanes, N., Fenollar, O., & Balart, R. (2017). The effect of maleinized linseed oil as biobased plasticizer in poly(lactic acid)-based formulations. Polymer International, 66(6), 882-891. doi:10.1002/pi.5329

Ernzen, J. R., Bondan, F., Luvison, C., Henrique Wanke, C., De Nardi Martins, J., Fiorio, R., & Bianchi, O. (2015). Structure and properties relationship of melt reacted polyamide 6/malenized soybean oil. Journal of Applied Polymer Science, 133(8), n/a-n/a. doi:10.1002/app.43050

Yokohara, T., & Yamaguchi, M. (2008). Structure and properties for biomass-based polyester blends of PLA and PBS. European Polymer Journal, 44(3), 677-685. doi:10.1016/j.eurpolymj.2008.01.008

Luo, X., Li, J., Feng, J., Yang, T., & Lin, X. (2014). Mechanical and thermal performance of distillers grains filled poly(butylene succinate) composites. Materials & Design, 57, 195-200. doi:10.1016/j.matdes.2013.12.056

Bendahou, A., Kaddami, H., Sautereau, H., Raihane, M., Erchiqui, F., & Dufresne, A. (2008). Short Palm Tree Fibers Polyolefin Composites: Effect of Filler Content and Coupling Agent on Physical Properties. Macromolecular Materials and Engineering, 293(2), 140-148. doi:10.1002/mame.200700315

Li, J., Luo, X., & Lin, X. (2013). Preparation and characterization of hollow glass microsphere reinforced poly(butylene succinate) composites. Materials & Design, 46, 902-909. doi:10.1016/j.matdes.2012.11.054

Carrasco, F., Pérez-Maqueda, L. A., Sánchez-Jiménez, P. E., Perejón, A., Santana, O. O., & Maspoch, M. L. (2013). Enhanced general analytical equation for the kinetics of the thermal degradation of poly(lactic acid) driven by random scission. Polymer Testing, 32(5), 937-945. doi:10.1016/j.polymertesting.2013.04.013

Shih, Y.-F. (2009). Thermal degradation and kinetic analysis of biodegradable PBS/multiwalled carbon nanotube nanocomposites. Journal of Polymer Science Part B: Polymer Physics, 47(13), 1231-1239. doi:10.1002/polb.21728

Faulstich de Paiva, J. M., & Frollini, E. (2006). Unmodified and Modified Surface Sisal Fibers as Reinforcement of Phenolic and Lignophenolic Matrices Composites: Thermal Analyses of Fibers and Composites. Macromolecular Materials and Engineering, 291(4), 405-417. doi:10.1002/mame.200500334

Quiles-Carrillo, L., Montanes, N., Garcia-Garcia, D., Carbonell-Verdu, A., Balart, R., & Torres-Giner, S. (2018). Effect of different compatibilizers on injection-molded green composite pieces based on polylactide filled with almond shell flour. Composites Part B: Engineering, 147, 76-85. doi:10.1016/j.compositesb.2018.04.017

Nabinejad, O., Sujan, D., Rahman, M. E., & Davies, I. J. (2015). Determination of filler content for natural filler polymer composite by thermogravimetric analysis. Journal of Thermal Analysis and Calorimetry, 122(1), 227-233. doi:10.1007/s10973-015-4681-2

Kim, H.-S., Kim, S., Kim, H.-J., & Yang, H.-S. (2006). Thermal properties of bio-flour-filled polyolefin composites with different compatibilizing agent type and content. Thermochimica Acta, 451(1-2), 181-188. doi:10.1016/j.tca.2006.09.013

Poletto, M., Zattera, A. J., Forte, M. M. C., & Santana, R. M. C. (2012). Thermal decomposition of wood: Influence of wood components and cellulose crystallite size. Bioresource Technology, 109, 148-153. doi:10.1016/j.biortech.2011.11.122

Alemdar, A., & Sain, M. (2008). Biocomposites from wheat straw nanofibers: Morphology, thermal and mechanical properties. Composites Science and Technology, 68(2), 557-565. doi:10.1016/j.compscitech.2007.05.044

Sánchez-Jiménez, P. E., Pérez-Maqueda, L. A., Perejón, A., & Criado, J. M. (2013). Generalized master plots as a straightforward approach for determining the kinetic model: The case of cellulose pyrolysis. Thermochimica Acta, 552, 54-59. doi:10.1016/j.tca.2012.11.003

Carrasco, F., Cailloux, J., Sánchez-Jiménez, P. E., & Maspoch, M. L. (2014). Improvement of the thermal stability of branched poly(lactic acid) obtained by reactive extrusion. Polymer Degradation and Stability, 104, 40-49. doi:10.1016/j.polymdegradstab.2014.03.026

Jin, H.-J., Lee, B.-Y., Kim, M.-N., & Yoon, J.-S. (2000). Properties and biodegradation of poly(ethylene adipate) and poly(butylene succinate) containing styrene glycol units. European Polymer Journal, 36(12), 2693-2698. doi:10.1016/s0014-3057(00)00057-4

Sahoo, S., Misra, M., & Mohanty, A. K. (2012). Effect of compatibilizer and fillers on the properties of injection molded lignin-based hybrid green composites. Journal of Applied Polymer Science, 127(5), 4110-4121. doi:10.1002/app.37667

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record