- -

Optimization of Maleinized Linseed Oil Loading as a Biobased Compatibilizer in Poly(Butylene Succinate) Composites with Almond Shell Flour

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Optimization of Maleinized Linseed Oil Loading as a Biobased Compatibilizer in Poly(Butylene Succinate) Composites with Almond Shell Flour

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Limiñana-Gregori, Patricia es_ES
dc.contributor.author Garcia-Sanoguera, David es_ES
dc.contributor.author Quiles-Carrillo, Luis es_ES
dc.contributor.author Balart, Rafael es_ES
dc.contributor.author Montanes, Nestor es_ES
dc.date.accessioned 2020-02-19T21:00:37Z
dc.date.available 2020-02-19T21:00:37Z
dc.date.issued 2019 es_ES
dc.identifier.uri http://hdl.handle.net/10251/137339
dc.description.abstract [EN] Green composites of poly(butylene succinate) (PBS) were manufactured with almond shell flour (ASF) by reactive compatibilization with maleinized linseed oil *MLO) by extrusion and subsequent injection molding. ASF was kept constant at 30 wt %, while the effect of different MLO loading on mechanical, thermal, thermomechanical, and morphology properties was studied. Uncompatibilized PBS/ASF composites show a remarkable decrease in mechanical properties due to the nonexistent polymer¿filler interaction, as evidenced by field emission scanning electron microscopy (FESEM). MLO provides a plasticization effect on PBS/ASF composites but, in addition, acts as a compatibilizer agent since the maleic anhydride groups contained in MLO are likely to react with hydroxyl groups in both PBS end chains and ASF particles. This compatibilizing effect is observed by FESEM with a reduction of the gap between the filler particles and the surrounding PBS matrix. In addition, the Tg of PBS increases from ¿28 °C to ¿12 °C with an MLO content of 10 wt %, thus indicating compatibilization. MLO has been validated as an environmentally friendly additive to PBS/ASF composites to give materials with high environmental efficiency. es_ES
dc.description.sponsorship This work was supported by the Ministry of Economy and Competitiveness (MINECO) grant number MAT2017-84909-C2-2-R. L.Q.-C. wants to thank Generalitat Valenciana (GV) for his FPI grant (ACIF/2016/182) and the Spanish Ministry of Education, Culture, and Sports (MECD) for his FPU grant (FPU15/03812). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Materials es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Polymer-matrix composites (PMCs) es_ES
dc.subject Mechanical properties es_ES
dc.subject Thermomechanical es_ES
dc.subject Electron microscopy es_ES
dc.subject Compatibilizers es_ES
dc.subject.classification INGENIERIA MECANICA es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.title Optimization of Maleinized Linseed Oil Loading as a Biobased Compatibilizer in Poly(Butylene Succinate) Composites with Almond Shell Flour es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/ma12050685 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-84909-C2-2-R/ES/PROCESADO Y OPTIMIZACION DE MATERIALES AVANZADOS DERIVADOS DE ESTRUCTURAS PROTEICAS Y COMPONENTES LIGNOCELULOSICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACIF%2F2016%2F182/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU15%2F03812/ES/FPU15%2F03812/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials es_ES
dc.description.bibliographicCitation Limiñana-Gregori, P.; Garcia-Sanoguera, D.; Quiles-Carrillo, L.; Balart, R.; Montanes, N. (2019). Optimization of Maleinized Linseed Oil Loading as a Biobased Compatibilizer in Poly(Butylene Succinate) Composites with Almond Shell Flour. Materials. 12(5):1-14. https://doi.org/10.3390/ma12050685 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/ma12050685 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 5 es_ES
dc.identifier.eissn 1996-1944 es_ES
dc.relation.pasarela S\379177 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.description.references Liminana, P., Garcia-Sanoguera, D., Quiles-Carrillo, L., Balart, R., & Montanes, N. (2018). Development and characterization of environmentally friendly composites from poly(butylene succinate) (PBS) and almond shell flour with different compatibilizers. Composites Part B: Engineering, 144, 153-162. doi:10.1016/j.compositesb.2018.02.031 es_ES
dc.description.references Bechthold, I., Bretz, K., Kabasci, S., Kopitzky, R., & Springer, A. (2008). Succinic Acid: A New Platform Chemical for Biobased Polymers from Renewable Resources. Chemical Engineering & Technology, 31(5), 647-654. doi:10.1002/ceat.200800063 es_ES
dc.description.references McKinlay, J. B., Vieille, C., & Zeikus, J. G. (2007). Prospects for a bio-based succinate industry. Applied Microbiology and Biotechnology, 76(4), 727-740. doi:10.1007/s00253-007-1057-y es_ES
dc.description.references Bozell, J. J., & Petersen, G. R. (2010). Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s «Top 10» revisited. Green Chemistry, 12(4), 539. doi:10.1039/b922014c es_ES
dc.description.references Kim, H.-S., Yang, H.-S., & Kim, H.-J. (2005). Biodegradability and mechanical properties of agro-flour-filled polybutylene succinate biocomposites. Journal of Applied Polymer Science, 97(4), 1513-1521. doi:10.1002/app.21905 es_ES
dc.description.references Siracusa, V., Lotti, N., Munari, A., & Dalla Rosa, M. (2015). Poly(butylene succinate) and poly(butylene succinate-co-adipate) for food packaging applications: Gas barrier properties after stressed treatments. Polymer Degradation and Stability, 119, 35-45. doi:10.1016/j.polymdegradstab.2015.04.026 es_ES
dc.description.references Vytejčková, S., Vápenka, L., Hradecký, J., Dobiáš, J., Hajšlová, J., Loriot, C., … Poustka, J. (2017). Testing of polybutylene succinate based films for poultry meat packaging. Polymer Testing, 60, 357-364. doi:10.1016/j.polymertesting.2017.04.018 es_ES
dc.description.references Hongsriphan, N., & Sanga, S. (2017). Antibacterial food packaging sheets prepared by coating chitosan on corona-treated extruded poly(lactic acid)/poly(butylene succinate) blends. Journal of Plastic Film & Sheeting, 34(2), 160-178. doi:10.1177/8756087917722585 es_ES
dc.description.references Imre, B., & Pukánszky, B. (2013). Compatibilization in bio-based and biodegradable polymer blends. European Polymer Journal, 49(6), 1215-1233. doi:10.1016/j.eurpolymj.2013.01.019 es_ES
dc.description.references Dorez, G., Taguet, A., Ferry, L., & Lopez-Cuesta, J. M. (2013). Thermal and fire behavior of natural fibers/PBS biocomposites. Polymer Degradation and Stability, 98(1), 87-95. doi:10.1016/j.polymdegradstab.2012.10.026 es_ES
dc.description.references Frollini, E., Bartolucci, N., Sisti, L., & Celli, A. (2013). Poly(butylene succinate) reinforced with different lignocellulosic fibers. Industrial Crops and Products, 45, 160-169. doi:10.1016/j.indcrop.2012.12.013 es_ES
dc.description.references Kurokawa, N., Kimura, S., & Hotta, A. (2017). Mechanical properties of poly(butylene succinate) composites with aligned cellulose‐acetate nanofibers. Journal of Applied Polymer Science, 135(24), 45429. doi:10.1002/app.45429 es_ES
dc.description.references Terzopoulou, Z. N., Papageorgiou, G. Z., Papadopoulou, E., Athanassiadou, E., Reinders, M., & Bikiaris, D. N. (2014). Development and study of fully biodegradable composite materials based on poly(butylene succinate) and hemp fibers or hemp shives. Polymer Composites, 37(2), 407-421. doi:10.1002/pc.23194 es_ES
dc.description.references Lee, H. Y., & Cho, D. (2017). Influence of Waste Fiber Content on the Thermal and Mechanical Properties of Waste Silk/Waste Wool/PBS Hybrid Biocomposites. Polymer Korea, 41(4), 719-726. doi:10.7317/pk.2017.41.4.719 es_ES
dc.description.references Flores-Cano, J. V., Sánchez-Polo, M., Messoud, J., Velo-Gala, I., Ocampo-Pérez, R., & Rivera-Utrilla, J. (2016). Overall adsorption rate of metronidazole, dimetridazole and diatrizoate on activated carbons prepared from coffee residues and almond shells. Journal of Environmental Management, 169, 116-125. doi:10.1016/j.jenvman.2015.12.001 es_ES
dc.description.references Loffredo, E., Castellana, G., & Senesi, N. (2013). Decontamination of a municipal landfill leachate from endocrine disruptors using a combined sorption/bioremoval approach. Environmental Science and Pollution Research, 21(4), 2654-2662. doi:10.1007/s11356-013-2202-z es_ES
dc.description.references Loffredo, E., Castellana, G., & Taskin, E. (2016). A Two-Step Approach to Eliminate Pesticides and Estrogens from a Wastewater and Reduce Its Phytotoxicity: Adsorption onto Plant-Derived Materials and Fungal Degradation. Water, Air, & Soil Pollution, 227(6). doi:10.1007/s11270-016-2883-2 es_ES
dc.description.references Adánez-Rubio, I., Pérez-Astray, A., Mendiara, T., Izquierdo, M. T., Abad, A., Gayán, P., … Adánez, J. (2018). Chemical looping combustion of biomass: CLOU experiments with a Cu-Mn mixed oxide. Fuel Processing Technology, 172, 179-186. doi:10.1016/j.fuproc.2017.12.010 es_ES
dc.description.references Cerone, N., & Zimbardi, F. (2018). Gasification of Agroresidues for Syngas Production. Energies, 11(5), 1280. doi:10.3390/en11051280 es_ES
dc.description.references Safari, F., Javani, N., & Yumurtaci, Z. (2018). Hydrogen production via supercritical water gasification of almond shell over algal and agricultural hydrochars as catalysts. International Journal of Hydrogen Energy, 43(2), 1071-1080. doi:10.1016/j.ijhydene.2017.05.102 es_ES
dc.description.references Essabir, H., Nekhlaoui, S., Malha, M., Bensalah, M. O., Arrakhiz, F. Z., Qaiss, A., & Bouhfid, R. (2013). Bio-composites based on polypropylene reinforced with Almond Shells particles: Mechanical and thermal properties. Materials & Design, 51, 225-230. doi:10.1016/j.matdes.2013.04.031 es_ES
dc.description.references El Mechtali, F. Z., Essabir, H., Nekhlaoui, S., Bensalah, M. O., Jawaid, M., Bouhfid, R., & Qaiss, A. (2015). Mechanical and thermal properties of polypropylene reinforced with almond shells particles: Impact of chemical treatments. Journal of Bionic Engineering, 12(3), 483-494. doi:10.1016/s1672-6529(14)60139-6 es_ES
dc.description.references Quiles-Carrillo, L., Montanes, N., Sammon, C., Balart, R., & Torres-Giner, S. (2018). Compatibilization of highly sustainable polylactide/almond shell flour composites by reactive extrusion with maleinized linseed oil. Industrial Crops and Products, 111, 878-888. doi:10.1016/j.indcrop.2017.10.062 es_ES
dc.description.references Caballero, J. A., Conesa, J. A., Font, R., & Marcilla, A. (1997). Pyrolysis kinetics of almond shells and olive stones considering their organic fractions. Journal of Analytical and Applied Pyrolysis, 42(2), 159-175. doi:10.1016/s0165-2370(97)00015-6 es_ES
dc.description.references Faludi, G., Dora, G., Imre, B., Renner, K., Móczó, J., & Pukánszky, B. (2013). PLA/lignocellulosic fiber composites: Particle characteristics, interfacial adhesion, and failure mechanism. Journal of Applied Polymer Science, 131(4), n/a-n/a. doi:10.1002/app.39902 es_ES
dc.description.references García-García, D., Carbonell, A., Samper, M. D., García-Sanoguera, D., & Balart, R. (2015). Green composites based on polypropylene matrix and hydrophobized spend coffee ground (SCG) powder. Composites Part B: Engineering, 78, 256-265. doi:10.1016/j.compositesb.2015.03.080 es_ES
dc.description.references Kabir, M. M., Wang, H., Lau, K. T., & Cardona, F. (2012). Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Composites Part B: Engineering, 43(7), 2883-2892. doi:10.1016/j.compositesb.2012.04.053 es_ES
dc.description.references Wang, F., Yang, M., Zhou, S., Ran, S., & Zhang, J. (2017). Effect of fiber volume fraction on the thermal and mechanical behavior of polylactide-based composites incorporating bamboo fibers. Journal of Applied Polymer Science, 135(15), 46148. doi:10.1002/app.46148 es_ES
dc.description.references Nam, T. H., Ogihara, S., Tung, N. H., & Kobayashi, S. (2011). Effect of alkali treatment on interfacial and mechanical properties of coir fiber reinforced poly(butylene succinate) biodegradable composites. Composites Part B: Engineering, 42(6), 1648-1656. doi:10.1016/j.compositesb.2011.04.001 es_ES
dc.description.references Sinha, A. K., Narang, H. K., & Bhattacharya, S. (2017). Mechanical properties of natural fibre polymer composites. Journal of Polymer Engineering, 37(9), 879-895. doi:10.1515/polyeng-2016-0362 es_ES
dc.description.references Balart, J. F., Fombuena, V., Fenollar, O., Boronat, T., & Sánchez-Nacher, L. (2016). Processing and characterization of high environmental efficiency composites based on PLA and hazelnut shell flour (HSF) with biobased plasticizers derived from epoxidized linseed oil (ELO). Composites Part B: Engineering, 86, 168-177. doi:10.1016/j.compositesb.2015.09.063 es_ES
dc.description.references Karmarkar, A., Chauhan, S. S., Modak, J. M., & Chanda, M. (2007). Mechanical properties of wood–fiber reinforced polypropylene composites: Effect of a novel compatibilizer with isocyanate functional group. Composites Part A: Applied Science and Manufacturing, 38(2), 227-233. doi:10.1016/j.compositesa.2006.05.005 es_ES
dc.description.references Chieng, B., Ibrahim, N., Then, Y., & Loo, Y. (2014). Epoxidized Vegetable Oils Plasticized Poly(lactic acid) Biocomposites: Mechanical, Thermal and Morphology Properties. Molecules, 19(10), 16024-16038. doi:10.3390/molecules191016024 es_ES
dc.description.references Garcia-Garcia, D., Fenollar, O., Fombuena, V., Lopez-Martinez, J., & Balart, R. (2016). Improvement of Mechanical Ductile Properties of Poly(3-hydroxybutyrate) by Using Vegetable Oil Derivatives. Macromolecular Materials and Engineering, 302(2), 1600330. doi:10.1002/mame.201600330 es_ES
dc.description.references Samper, M. D., Petrucci, R., Sanchez-Nacher, L., Balart, R., & Kenny, J. M. (2015). Properties of composite laminates based on basalt fibers with epoxidized vegetable oils. Materials & Design, 72, 9-15. doi:10.1016/j.matdes.2015.02.002 es_ES
dc.description.references Zhao, Y., Qu, J., Feng, Y., Wu, Z., Chen, F., & Tang, H. (2011). Mechanical and thermal properties of epoxidized soybean oil plasticized polybutylene succinate blends. Polymers for Advanced Technologies, 23(3), 632-638. doi:10.1002/pat.1937 es_ES
dc.description.references Sarwono, A., Man, Z., & Bustam, M. A. (2012). Blending of Epoxidised Palm Oil with Epoxy Resin: The Effect on Morphology, Thermal and Mechanical Properties. Journal of Polymers and the Environment, 20(2), 540-549. doi:10.1007/s10924-012-0418-5 es_ES
dc.description.references Park, S.-J., Jin, F.-L., & Lee, J.-R. (2004). Effect of Biodegradable Epoxidized Castor Oil on Physicochemical and Mechanical Properties of Epoxy Resins. Macromolecular Chemistry and Physics, 205(15), 2048-2054. doi:10.1002/macp.200400214 es_ES
dc.description.references Huang, K., Zhang, P., Zhang, J., Li, S., Li, M., Xia, J., & Zhou, Y. (2013). Preparation of biobased epoxies using tung oil fatty acid-derived C21 diacid and C22 triacid and study of epoxy properties. Green Chemistry, 15(9), 2466. doi:10.1039/c3gc40622a es_ES
dc.description.references Ferri, J. M., Garcia-Garcia, D., Sánchez-Nacher, L., Fenollar, O., & Balart, R. (2016). The effect of maleinized linseed oil (MLO) on mechanical performance of poly(lactic acid)-thermoplastic starch (PLA-TPS) blends. Carbohydrate Polymers, 147, 60-68. doi:10.1016/j.carbpol.2016.03.082 es_ES
dc.description.references Garcia-Campo, M., Quiles-Carrillo, L., Masia, J., Reig-Pérez, M., Montanes, N., & Balart, R. (2017). Environmentally Friendly Compatibilizers from Soybean Oil for Ternary Blends of Poly(lactic acid)-PLA, Poly(ε-caprolactone)-PCL and Poly(3-hydroxybutyrate)-PHB. Materials, 10(11), 1339. doi:10.3390/ma10111339 es_ES
dc.description.references Carbonell-Verdu, A., Ferri, J. M., Dominici, F., Boronat, T., Sanchez-Nacher, L., Balart, R., & Torre, L. (2018). Manufacturing and compatibilization of PLA/PBAT binary blends by cottonseed oil-based derivatives. Express Polymer Letters, 12(9), 808-823. doi:10.3144/expresspolymlett.2018.69 es_ES
dc.description.references Carbonell-Verdu, A., Garcia-Garcia, D., Dominici, F., Torre, L., Sanchez-Nacher, L., & Balart, R. (2017). PLA films with improved flexibility properties by using maleinized cottonseed oil. European Polymer Journal, 91, 248-259. doi:10.1016/j.eurpolymj.2017.04.013 es_ES
dc.description.references Quiles-Carrillo, L., Blanes-Martínez, M. M., Montanes, N., Fenollar, O., Torres-Giner, S., & Balart, R. (2018). Reactive toughening of injection-molded polylactide pieces using maleinized hemp seed oil. European Polymer Journal, 98, 402-410. doi:10.1016/j.eurpolymj.2017.11.039 es_ES
dc.description.references Ren, M., Song, J., Song, C., Zhang, H., Sun, X., Chen, Q., … Mo, Z. (2005). Crystallization kinetics and morphology of poly(butylene succinate-co-adipate). Journal of Polymer Science Part B: Polymer Physics, 43(22), 3231-3241. doi:10.1002/polb.20539 es_ES
dc.description.references Ferri, J. M., Garcia-Garcia, D., Montanes, N., Fenollar, O., & Balart, R. (2017). The effect of maleinized linseed oil as biobased plasticizer in poly(lactic acid)-based formulations. Polymer International, 66(6), 882-891. doi:10.1002/pi.5329 es_ES
dc.description.references Ernzen, J. R., Bondan, F., Luvison, C., Henrique Wanke, C., De Nardi Martins, J., Fiorio, R., & Bianchi, O. (2015). Structure and properties relationship of melt reacted polyamide 6/malenized soybean oil. Journal of Applied Polymer Science, 133(8), n/a-n/a. doi:10.1002/app.43050 es_ES
dc.description.references Yokohara, T., & Yamaguchi, M. (2008). Structure and properties for biomass-based polyester blends of PLA and PBS. European Polymer Journal, 44(3), 677-685. doi:10.1016/j.eurpolymj.2008.01.008 es_ES
dc.description.references Luo, X., Li, J., Feng, J., Yang, T., & Lin, X. (2014). Mechanical and thermal performance of distillers grains filled poly(butylene succinate) composites. Materials & Design, 57, 195-200. doi:10.1016/j.matdes.2013.12.056 es_ES
dc.description.references Bendahou, A., Kaddami, H., Sautereau, H., Raihane, M., Erchiqui, F., & Dufresne, A. (2008). Short Palm Tree Fibers Polyolefin Composites: Effect of Filler Content and Coupling Agent on Physical Properties. Macromolecular Materials and Engineering, 293(2), 140-148. doi:10.1002/mame.200700315 es_ES
dc.description.references Li, J., Luo, X., & Lin, X. (2013). Preparation and characterization of hollow glass microsphere reinforced poly(butylene succinate) composites. Materials & Design, 46, 902-909. doi:10.1016/j.matdes.2012.11.054 es_ES
dc.description.references Carrasco, F., Pérez-Maqueda, L. A., Sánchez-Jiménez, P. E., Perejón, A., Santana, O. O., & Maspoch, M. L. (2013). Enhanced general analytical equation for the kinetics of the thermal degradation of poly(lactic acid) driven by random scission. Polymer Testing, 32(5), 937-945. doi:10.1016/j.polymertesting.2013.04.013 es_ES
dc.description.references Shih, Y.-F. (2009). Thermal degradation and kinetic analysis of biodegradable PBS/multiwalled carbon nanotube nanocomposites. Journal of Polymer Science Part B: Polymer Physics, 47(13), 1231-1239. doi:10.1002/polb.21728 es_ES
dc.description.references Faulstich de Paiva, J. M., & Frollini, E. (2006). Unmodified and Modified Surface Sisal Fibers as Reinforcement of Phenolic and Lignophenolic Matrices Composites: Thermal Analyses of Fibers and Composites. Macromolecular Materials and Engineering, 291(4), 405-417. doi:10.1002/mame.200500334 es_ES
dc.description.references Quiles-Carrillo, L., Montanes, N., Garcia-Garcia, D., Carbonell-Verdu, A., Balart, R., & Torres-Giner, S. (2018). Effect of different compatibilizers on injection-molded green composite pieces based on polylactide filled with almond shell flour. Composites Part B: Engineering, 147, 76-85. doi:10.1016/j.compositesb.2018.04.017 es_ES
dc.description.references Nabinejad, O., Sujan, D., Rahman, M. E., & Davies, I. J. (2015). Determination of filler content for natural filler polymer composite by thermogravimetric analysis. Journal of Thermal Analysis and Calorimetry, 122(1), 227-233. doi:10.1007/s10973-015-4681-2 es_ES
dc.description.references Kim, H.-S., Kim, S., Kim, H.-J., & Yang, H.-S. (2006). Thermal properties of bio-flour-filled polyolefin composites with different compatibilizing agent type and content. Thermochimica Acta, 451(1-2), 181-188. doi:10.1016/j.tca.2006.09.013 es_ES
dc.description.references Poletto, M., Zattera, A. J., Forte, M. M. C., & Santana, R. M. C. (2012). Thermal decomposition of wood: Influence of wood components and cellulose crystallite size. Bioresource Technology, 109, 148-153. doi:10.1016/j.biortech.2011.11.122 es_ES
dc.description.references Alemdar, A., & Sain, M. (2008). Biocomposites from wheat straw nanofibers: Morphology, thermal and mechanical properties. Composites Science and Technology, 68(2), 557-565. doi:10.1016/j.compscitech.2007.05.044 es_ES
dc.description.references Sánchez-Jiménez, P. E., Pérez-Maqueda, L. A., Perejón, A., & Criado, J. M. (2013). Generalized master plots as a straightforward approach for determining the kinetic model: The case of cellulose pyrolysis. Thermochimica Acta, 552, 54-59. doi:10.1016/j.tca.2012.11.003 es_ES
dc.description.references Carrasco, F., Cailloux, J., Sánchez-Jiménez, P. E., & Maspoch, M. L. (2014). Improvement of the thermal stability of branched poly(lactic acid) obtained by reactive extrusion. Polymer Degradation and Stability, 104, 40-49. doi:10.1016/j.polymdegradstab.2014.03.026 es_ES
dc.description.references Jin, H.-J., Lee, B.-Y., Kim, M.-N., & Yoon, J.-S. (2000). Properties and biodegradation of poly(ethylene adipate) and poly(butylene succinate) containing styrene glycol units. European Polymer Journal, 36(12), 2693-2698. doi:10.1016/s0014-3057(00)00057-4 es_ES
dc.description.references Sahoo, S., Misra, M., & Mohanty, A. K. (2012). Effect of compatibilizer and fillers on the properties of injection molded lignin-based hybrid green composites. Journal of Applied Polymer Science, 127(5), 4110-4121. doi:10.1002/app.37667 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem