- -

Method for obtaining the wheel-rail contact location and its application to the normal problem calculation through CONTACT

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Method for obtaining the wheel-rail contact location and its application to the normal problem calculation through CONTACT

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Baeza González, Luis Miguel es_ES
dc.contributor.author Thompson, David J. es_ES
dc.contributor.author Squicciarini, Giacomo es_ES
dc.contributor.author Denia, Francisco D. es_ES
dc.date.accessioned 2020-02-20T21:01:14Z
dc.date.available 2020-02-20T21:01:14Z
dc.date.issued 2018 es_ES
dc.identifier.issn 0042-3114 es_ES
dc.identifier.uri http://hdl.handle.net/10251/137419
dc.description.abstract [EN] This work presents a robust methodology for calculating inter-penetration areas between railway wheel and rail surfaces, the profiles of which are defined by a series of points. The method allows general three-dimensional displacements of the wheelset to be considered, and its characteristics make it especially suitable for dynamic simulations where the wheel-rail contact is assumed to be flexible. The technique is based on the discretization of the geometries of the surfaces in contact, considering the wheel as a set of truncated cones and the rail as points. By means of this approach, it is possible to reduce the problem to the calculation of the intersections between cones and lines, the solution for which has a closed-form expression. The method has been used in conjunction with the CONTACT algorithm in order to solve the static normal contact problem when the lateral displacement of the wheelset, its yaw angle and the vertical force applied in the wheelset centroid are prescribed. The results consist of smooth functions when the dependent coordinates are represented as a function of the independent ones, lacking the jump discontinuities that are present when a rigid contact model is adopted. Example results are shown and assessed for the normal contact problem for different lateral and yaw positions of the wheelset on the track. es_ES
dc.description.sponsorship This work was supported by the financial contribution of the European Union’s Shift2Rail programme (RUN2Rail project, grant number 777564), the Spanish Ministry of Economy, Industry and Competitiveness and the European Regional Development Fund (projects TRA2013-45596-C2-1-R and TRA2017-84701-R). es_ES
dc.language Inglés es_ES
dc.publisher Taylor & Francis es_ES
dc.relation.ispartof Vehicle System Dynamics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Flexible contact es_ES
dc.subject CONTACT es_ES
dc.subject Variational theory es_ES
dc.subject Railway dynamics es_ES
dc.subject Simulation es_ES
dc.subject.classification INGENIERIA MECANICA es_ES
dc.title Method for obtaining the wheel-rail contact location and its application to the normal problem calculation through CONTACT es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/00423114.2018.1439178 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/777564/EU/Innovative RUNning gear soluTiOns for new dependable, sustainable, intelligent and comfortable RAIL vehicles/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TRA2013-45596-C2-1-R/ES/DESARROLLO DE NUEVAS TECNOLOGIAS DESTINADAS A REDUCIR EL IMPACTO ACUSTICO DEL TRANSPORTE FERROVIARIO EN ENTORNOS URBANOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TRA2017-84701-R/ES/DESARROLLO DE UN MODELO INTEGRAL DE INTERACCION VEHICULO%2FVIA EN CURVA PARA LA REDUCCION DEL IMPACTO ACUSTICO DEL TRANSPORTE FERROVIARIO/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Baeza González, LM.; Thompson, DJ.; Squicciarini, G.; Denia, FD. (2018). Method for obtaining the wheel-rail contact location and its application to the normal problem calculation through CONTACT. Vehicle System Dynamics. 56(11):1734-1746. https://doi.org/10.1080/00423114.2018.1439178 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1080/00423114.2018.1439178 es_ES
dc.description.upvformatpinicio 1734 es_ES
dc.description.upvformatpfin 1746 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 56 es_ES
dc.description.issue 11 es_ES
dc.relation.pasarela S\350292 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Garg, V. K., & Dukkipati, R. V. (1984). Wheel–Rail Rolling Contact Theories. Dynamics of Railway Vehicle Systems, 103-134. doi:10.1016/b978-0-12-275950-5.50009-2 es_ES
dc.description.references Wickens, A. H. (1965). The dynamic stability of railway vehicle wheelsets and bogies having profiled wheels. International Journal of Solids and Structures, 1(3), 319-341. doi:10.1016/0020-7683(65)90037-5 es_ES
dc.description.references DE PATER, A. D. (1988). The Geometrical Contact between Track and Wheelset. Vehicle System Dynamics, 17(3), 127-140. doi:10.1080/00423118808968898 es_ES
dc.description.references Yang G. Dynamic analysis of railway wheelsets and complete vehicle systems (PhD thesis). Delft: Delft University of Technology; 1993. es_ES
dc.description.references Negretti, D. (2012). A third-order approximation method for three-dimensional wheel–rail contact. Vehicle System Dynamics, 50(3), 431-448. doi:10.1080/00423114.2011.595804 es_ES
dc.description.references Shabana AA, Zaazaa KE, Escalona JL, et al. Modeling two-point wheel/rail contacts using constraint and elastic-force approaches. In: Paidoussis MP, editor. ASME 2002 International Mechanical Engineering Congress and Exposition; 2002 Nov 17–22; New Orleans, Louisiana: American Society of Mechanical Engineers, Rail Transportation Division (Publication) RTD, p. 35–50. es_ES
dc.description.references Netter, H., Schupp, G., Rulka, W., & Schroeder, K. (1998). NEW ASPECTS OF CONTACT MODELLING AND VALIDATION WITHIN MULTIBODY SYSTEM SIMULATION OF RAILWAY VEHICLES. Vehicle System Dynamics, 29(sup1), 246-269. doi:10.1080/00423119808969563 es_ES
dc.description.references Pombo, J., Ambrósio, J., & Silva, M. (2007). A new wheel–rail contact model for railway dynamics. Vehicle System Dynamics, 45(2), 165-189. doi:10.1080/00423110600996017 es_ES
dc.description.references Polach, O. (2010). Characteristic parameters of nonlinear wheel/rail contact geometry. Vehicle System Dynamics, 48(sup1), 19-36. doi:10.1080/00423111003668203 es_ES
dc.description.references Santamaría, J., Vadillo, E. G., & Gómez, J. (2006). A comprehensive method for the elastic calculation of the two-point wheel–rail contact. Vehicle System Dynamics, 44(sup1), 240-250. doi:10.1080/00423110600870337 es_ES
dc.description.references Cuperus, J. L., & Venter, G. (2016). Numerical simulation and parameterisation of rail–wheel normal contact. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 231(4), 419-430. doi:10.1177/0954409716631009 es_ES
dc.description.references Chollet, H., Sébès, M., Maupu, J. L., & Ayasse, J. B. (2013). The VOCO multi-body software in the context of real-time simulation. Vehicle System Dynamics, 51(4), 570-580. doi:10.1080/00423114.2013.768771 es_ES
dc.description.references Pascal, J.-P., & Soua, B. (2016). Solving conformal contacts using multi-Hertzian techniques. Vehicle System Dynamics, 54(6), 784-813. doi:10.1080/00423114.2016.1161201 es_ES
dc.description.references Piotrowski, J., & Chollet, H. (2005). Wheel–rail contact models for vehicle system dynamics including multi-point contact. Vehicle System Dynamics, 43(6-7), 455-483. doi:10.1080/00423110500141144 es_ES
dc.description.references Vollebregt EAH, Weidemann C, Kienberger A. Use of “CONTACT” in multi-body vehicle dynamics and profile wear simulation: initial results. in: S. Iwinicki (Ed.) 22nd International Symposium on Dynamics of Vehicles on Roads and Tracks (IAVSD2011), Manchester: Manchester Metropolitan University; 2011. es_ES
dc.description.references Liu, B., Bruni, S., & Vollebregt, E. (2016). A non-Hertzian method for solving wheel–rail normal contact problem taking into account the effect of yaw. Vehicle System Dynamics, 54(9), 1226-1246. doi:10.1080/00423114.2016.1196823 es_ES
dc.description.references Kalker, J. J. (1990). Three-Dimensional Elastic Bodies in Rolling Contact. Solid Mechanics and Its Applications. doi:10.1007/978-94-015-7889-9 es_ES
dc.description.references Pombo, J., & Ambrosio, J. (2005). A computational efficient general wheel-rail contact detection method. Journal of Mechanical Science and Technology, 19(S1), 411-421. doi:10.1007/bf02916162 es_ES
dc.description.references Kaiser, I., & Popp, K. (2006). Interaction of elastic wheelsets and elastic rails: modelling and simulation. Vehicle System Dynamics, 44(sup1), 932-939. doi:10.1080/00423110600907675 es_ES
dc.description.references Falomi, S., Malvezzi, M., & Meli, E. (2011). Multibody modeling of railway vehicles: Innovative algorithms for the detection of wheel–rail contact points. Wear, 271(1-2), 453-461. doi:10.1016/j.wear.2010.10.039 es_ES
dc.description.references Meli, E., Magheri, S., & Malvezzi, M. (2011). Development and implementation of a differential elastic wheel–rail contact model for multibody applications. Vehicle System Dynamics, 49(6), 969-1001. doi:10.1080/00423114.2010.504854 es_ES
dc.description.references Burgelman N. The wheel–rail contact problem in vehicle dynamic simulation, in: Railahead Group [PhD thesis]. Technische Universiteit Delft; 2016. es_ES
dc.description.references Ren, Z., Iwnicki, S. D., & Xie, G. (2011). A new method for determining wheel–rail multi-point contact. Vehicle System Dynamics, 49(10), 1533-1551. doi:10.1080/00423114.2010.539237 es_ES
dc.description.references Yang, X., Gu, S., Zhou, S., Zhou, Y., & Lian, S. (2015). A method for improved accuracy in three dimensions for determining wheel/rail contact points. Vehicle System Dynamics, 53(11), 1620-1640. doi:10.1080/00423114.2015.1066508 es_ES
dc.description.references Johnson, K. L. (1985). Contact Mechanics. doi:10.1017/cbo9781139171731 es_ES
dc.description.references European Standards, Railway applications – testing for the acceptance of running characteristics of railway vehicles – testing of running behaviour and stationary tests, in: EN 14363:2005. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem