Mostrar el registro sencillo del ítem
dc.contributor.author | Baeza González, Luis Miguel | es_ES |
dc.contributor.author | Thompson, David J. | es_ES |
dc.contributor.author | Squicciarini, Giacomo | es_ES |
dc.contributor.author | Denia, Francisco D. | es_ES |
dc.date.accessioned | 2020-02-20T21:01:14Z | |
dc.date.available | 2020-02-20T21:01:14Z | |
dc.date.issued | 2018 | es_ES |
dc.identifier.issn | 0042-3114 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/137419 | |
dc.description.abstract | [EN] This work presents a robust methodology for calculating inter-penetration areas between railway wheel and rail surfaces, the profiles of which are defined by a series of points. The method allows general three-dimensional displacements of the wheelset to be considered, and its characteristics make it especially suitable for dynamic simulations where the wheel-rail contact is assumed to be flexible. The technique is based on the discretization of the geometries of the surfaces in contact, considering the wheel as a set of truncated cones and the rail as points. By means of this approach, it is possible to reduce the problem to the calculation of the intersections between cones and lines, the solution for which has a closed-form expression. The method has been used in conjunction with the CONTACT algorithm in order to solve the static normal contact problem when the lateral displacement of the wheelset, its yaw angle and the vertical force applied in the wheelset centroid are prescribed. The results consist of smooth functions when the dependent coordinates are represented as a function of the independent ones, lacking the jump discontinuities that are present when a rigid contact model is adopted. Example results are shown and assessed for the normal contact problem for different lateral and yaw positions of the wheelset on the track. | es_ES |
dc.description.sponsorship | This work was supported by the financial contribution of the European Union’s Shift2Rail programme (RUN2Rail project, grant number 777564), the Spanish Ministry of Economy, Industry and Competitiveness and the European Regional Development Fund (projects TRA2013-45596-C2-1-R and TRA2017-84701-R). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Taylor & Francis | es_ES |
dc.relation.ispartof | Vehicle System Dynamics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Flexible contact | es_ES |
dc.subject | CONTACT | es_ES |
dc.subject | Variational theory | es_ES |
dc.subject | Railway dynamics | es_ES |
dc.subject | Simulation | es_ES |
dc.subject.classification | INGENIERIA MECANICA | es_ES |
dc.title | Method for obtaining the wheel-rail contact location and its application to the normal problem calculation through CONTACT | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1080/00423114.2018.1439178 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/777564/EU/Innovative RUNning gear soluTiOns for new dependable, sustainable, intelligent and comfortable RAIL vehicles/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TRA2013-45596-C2-1-R/ES/DESARROLLO DE NUEVAS TECNOLOGIAS DESTINADAS A REDUCIR EL IMPACTO ACUSTICO DEL TRANSPORTE FERROVIARIO EN ENTORNOS URBANOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TRA2017-84701-R/ES/DESARROLLO DE UN MODELO INTEGRAL DE INTERACCION VEHICULO%2FVIA EN CURVA PARA LA REDUCCION DEL IMPACTO ACUSTICO DEL TRANSPORTE FERROVIARIO/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.description.bibliographicCitation | Baeza González, LM.; Thompson, DJ.; Squicciarini, G.; Denia, FD. (2018). Method for obtaining the wheel-rail contact location and its application to the normal problem calculation through CONTACT. Vehicle System Dynamics. 56(11):1734-1746. https://doi.org/10.1080/00423114.2018.1439178 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1080/00423114.2018.1439178 | es_ES |
dc.description.upvformatpinicio | 1734 | es_ES |
dc.description.upvformatpfin | 1746 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 56 | es_ES |
dc.description.issue | 11 | es_ES |
dc.relation.pasarela | S\350292 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Garg, V. K., & Dukkipati, R. V. (1984). Wheel–Rail Rolling Contact Theories. Dynamics of Railway Vehicle Systems, 103-134. doi:10.1016/b978-0-12-275950-5.50009-2 | es_ES |
dc.description.references | Wickens, A. H. (1965). The dynamic stability of railway vehicle wheelsets and bogies having profiled wheels. International Journal of Solids and Structures, 1(3), 319-341. doi:10.1016/0020-7683(65)90037-5 | es_ES |
dc.description.references | DE PATER, A. D. (1988). The Geometrical Contact between Track and Wheelset. Vehicle System Dynamics, 17(3), 127-140. doi:10.1080/00423118808968898 | es_ES |
dc.description.references | Yang G. Dynamic analysis of railway wheelsets and complete vehicle systems (PhD thesis). Delft: Delft University of Technology; 1993. | es_ES |
dc.description.references | Negretti, D. (2012). A third-order approximation method for three-dimensional wheel–rail contact. Vehicle System Dynamics, 50(3), 431-448. doi:10.1080/00423114.2011.595804 | es_ES |
dc.description.references | Shabana AA, Zaazaa KE, Escalona JL, et al. Modeling two-point wheel/rail contacts using constraint and elastic-force approaches. In: Paidoussis MP, editor. ASME 2002 International Mechanical Engineering Congress and Exposition; 2002 Nov 17–22; New Orleans, Louisiana: American Society of Mechanical Engineers, Rail Transportation Division (Publication) RTD, p. 35–50. | es_ES |
dc.description.references | Netter, H., Schupp, G., Rulka, W., & Schroeder, K. (1998). NEW ASPECTS OF CONTACT MODELLING AND VALIDATION WITHIN MULTIBODY SYSTEM SIMULATION OF RAILWAY VEHICLES. Vehicle System Dynamics, 29(sup1), 246-269. doi:10.1080/00423119808969563 | es_ES |
dc.description.references | Pombo, J., Ambrósio, J., & Silva, M. (2007). A new wheel–rail contact model for railway dynamics. Vehicle System Dynamics, 45(2), 165-189. doi:10.1080/00423110600996017 | es_ES |
dc.description.references | Polach, O. (2010). Characteristic parameters of nonlinear wheel/rail contact geometry. Vehicle System Dynamics, 48(sup1), 19-36. doi:10.1080/00423111003668203 | es_ES |
dc.description.references | Santamaría, J., Vadillo, E. G., & Gómez, J. (2006). A comprehensive method for the elastic calculation of the two-point wheel–rail contact. Vehicle System Dynamics, 44(sup1), 240-250. doi:10.1080/00423110600870337 | es_ES |
dc.description.references | Cuperus, J. L., & Venter, G. (2016). Numerical simulation and parameterisation of rail–wheel normal contact. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 231(4), 419-430. doi:10.1177/0954409716631009 | es_ES |
dc.description.references | Chollet, H., Sébès, M., Maupu, J. L., & Ayasse, J. B. (2013). The VOCO multi-body software in the context of real-time simulation. Vehicle System Dynamics, 51(4), 570-580. doi:10.1080/00423114.2013.768771 | es_ES |
dc.description.references | Pascal, J.-P., & Soua, B. (2016). Solving conformal contacts using multi-Hertzian techniques. Vehicle System Dynamics, 54(6), 784-813. doi:10.1080/00423114.2016.1161201 | es_ES |
dc.description.references | Piotrowski, J., & Chollet, H. (2005). Wheel–rail contact models for vehicle system dynamics including multi-point contact. Vehicle System Dynamics, 43(6-7), 455-483. doi:10.1080/00423110500141144 | es_ES |
dc.description.references | Vollebregt EAH, Weidemann C, Kienberger A. Use of “CONTACT” in multi-body vehicle dynamics and profile wear simulation: initial results. in: S. Iwinicki (Ed.) 22nd International Symposium on Dynamics of Vehicles on Roads and Tracks (IAVSD2011), Manchester: Manchester Metropolitan University; 2011. | es_ES |
dc.description.references | Liu, B., Bruni, S., & Vollebregt, E. (2016). A non-Hertzian method for solving wheel–rail normal contact problem taking into account the effect of yaw. Vehicle System Dynamics, 54(9), 1226-1246. doi:10.1080/00423114.2016.1196823 | es_ES |
dc.description.references | Kalker, J. J. (1990). Three-Dimensional Elastic Bodies in Rolling Contact. Solid Mechanics and Its Applications. doi:10.1007/978-94-015-7889-9 | es_ES |
dc.description.references | Pombo, J., & Ambrosio, J. (2005). A computational efficient general wheel-rail contact detection method. Journal of Mechanical Science and Technology, 19(S1), 411-421. doi:10.1007/bf02916162 | es_ES |
dc.description.references | Kaiser, I., & Popp, K. (2006). Interaction of elastic wheelsets and elastic rails: modelling and simulation. Vehicle System Dynamics, 44(sup1), 932-939. doi:10.1080/00423110600907675 | es_ES |
dc.description.references | Falomi, S., Malvezzi, M., & Meli, E. (2011). Multibody modeling of railway vehicles: Innovative algorithms for the detection of wheel–rail contact points. Wear, 271(1-2), 453-461. doi:10.1016/j.wear.2010.10.039 | es_ES |
dc.description.references | Meli, E., Magheri, S., & Malvezzi, M. (2011). Development and implementation of a differential elastic wheel–rail contact model for multibody applications. Vehicle System Dynamics, 49(6), 969-1001. doi:10.1080/00423114.2010.504854 | es_ES |
dc.description.references | Burgelman N. The wheel–rail contact problem in vehicle dynamic simulation, in: Railahead Group [PhD thesis]. Technische Universiteit Delft; 2016. | es_ES |
dc.description.references | Ren, Z., Iwnicki, S. D., & Xie, G. (2011). A new method for determining wheel–rail multi-point contact. Vehicle System Dynamics, 49(10), 1533-1551. doi:10.1080/00423114.2010.539237 | es_ES |
dc.description.references | Yang, X., Gu, S., Zhou, S., Zhou, Y., & Lian, S. (2015). A method for improved accuracy in three dimensions for determining wheel/rail contact points. Vehicle System Dynamics, 53(11), 1620-1640. doi:10.1080/00423114.2015.1066508 | es_ES |
dc.description.references | Johnson, K. L. (1985). Contact Mechanics. doi:10.1017/cbo9781139171731 | es_ES |
dc.description.references | European Standards, Railway applications – testing for the acceptance of running characteristics of railway vehicles – testing of running behaviour and stationary tests, in: EN 14363:2005. | es_ES |