- -

Extracellular Vesicles from Mesenchymal Stem Cells as Novel Treatments for Musculoskeletal Diseases

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Extracellular Vesicles from Mesenchymal Stem Cells as Novel Treatments for Musculoskeletal Diseases

Show full item record

Alcaraz Tormo, MJ.; Compañ, Á.; Guillem Salazar, MI. (2019). Extracellular Vesicles from Mesenchymal Stem Cells as Novel Treatments for Musculoskeletal Diseases. Cells. 9(1):1-21. https://doi.org/10.3390/cells9010098

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/137596

Files in this item

Item Metadata

Title: Extracellular Vesicles from Mesenchymal Stem Cells as Novel Treatments for Musculoskeletal Diseases
Author: ALCARAZ TORMO, Mª JOSE Compañ, Álvaro Guillem Salazar, Mª Isabel
Issued date:
Abstract:
[EN] Mesenchymal stem/stromal cells (MSCs) represent a promising therapy for musculoskeletal diseases. There is compelling evidence indicating that MSC effects are mainly mediated by paracrine mechanisms and in particular ...[+]
Subjects: Mesenchymal stem cells , Extracellular vesicles , Immunoregulation , Bone diseases , Osteoarthritis
Copyrigths: Reconocimiento (by)
Source:
Cells. (issn: 2073-4409 )
DOI: 10.3390/cells9010098
Publisher:
MDPI
Publisher version: https://doi.org/10.3390/cells9010098
Project ID:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/SAF2017-85806-R/ES/MECANISMOS REGULADORES DE LA INFLAMACION Y SU RESOLUCION EN ENFERMEDADES CRONICAS ARTICULARES Y DE LA PIEL/
Thanks:
This work has been funded by grant SAF2017-85806-R (Ministerio de Ciencia, Innovación y Universidades, Spain, FEDER.
Type: Artículo

References

Musculoskeletal Conditions https://www.who. int/news-room/fact-sheets/detail/musculoskeletal-conditions

Hofer, H. R., & Tuan, R. S. (2016). Secreted trophic factors of mesenchymal stem cells support neurovascular and musculoskeletal therapies. Stem Cell Research & Therapy, 7(1). doi:10.1186/s13287-016-0394-0

Wang, L., Wang, L., Cong, X., Liu, G., Zhou, J., Bai, B., … Liu, Y. (2013). Human Umbilical Cord Mesenchymal Stem Cell Therapy for Patients with Active Rheumatoid Arthritis: Safety and Efficacy. Stem Cells and Development, 22(24), 3192-3202. doi:10.1089/scd.2013.0023 [+]
Musculoskeletal Conditions https://www.who. int/news-room/fact-sheets/detail/musculoskeletal-conditions

Hofer, H. R., & Tuan, R. S. (2016). Secreted trophic factors of mesenchymal stem cells support neurovascular and musculoskeletal therapies. Stem Cell Research & Therapy, 7(1). doi:10.1186/s13287-016-0394-0

Wang, L., Wang, L., Cong, X., Liu, G., Zhou, J., Bai, B., … Liu, Y. (2013). Human Umbilical Cord Mesenchymal Stem Cell Therapy for Patients with Active Rheumatoid Arthritis: Safety and Efficacy. Stem Cells and Development, 22(24), 3192-3202. doi:10.1089/scd.2013.0023

Franceschetti, T., & De Bari, C. (2017). The potential role of adult stem cells in the management of the rheumatic diseases. Therapeutic Advances in Musculoskeletal Disease, 9(7), 165-179. doi:10.1177/1759720x17704639

Freitag, J., Bates, D., Boyd, R., Shah, K., Barnard, A., Huguenin, L., & Tenen, A. (2016). Mesenchymal stem cell therapy in the treatment of osteoarthritis: reparative pathways, safety and efficacy – a review. BMC Musculoskeletal Disorders, 17(1). doi:10.1186/s12891-016-1085-9

Vega, A., Martín-Ferrero, M. A., Del Canto, F., Alberca, M., García, V., Munar, A., … García-Sancho, J. (2015). Treatment of Knee Osteoarthritis With Allogeneic Bone Marrow Mesenchymal Stem Cells. Transplantation, 99(8), 1681-1690. doi:10.1097/tp.0000000000000678

Cui, G.-H., Wang, Y. Y., Li, C.-J., Shi, C.-H., & Wang, W.-S. (2016). Efficacy of mesenchymal stem cells in treating patients with osteoarthritis of the knee: A meta-analysis. Experimental and Therapeutic Medicine, 12(5), 3390-3400. doi:10.3892/etm.2016.3791

Iaquinta, M. R., Mazzoni, E., Bononi, I., Rotondo, J. C., Mazziotta, C., Montesi, M., … Martini, F. (2019). Adult Stem Cells for Bone Regeneration and Repair. Frontiers in Cell and Developmental Biology, 7. doi:10.3389/fcell.2019.00268

Marolt Presen, D., Traweger, A., Gimona, M., & Redl, H. (2019). Mesenchymal Stromal Cell-Based Bone Regeneration Therapies: From Cell Transplantation and Tissue Engineering to Therapeutic Secretomes and Extracellular Vesicles. Frontiers in Bioengineering and Biotechnology, 7. doi:10.3389/fbioe.2019.00352

Jo, C. H., Chai, J. W., Jeong, E. C., Oh, S., & Yoon, K. S. (2020). Intratendinous Injection of Mesenchymal Stem Cells for the Treatment of Rotator Cuff Disease: A 2-Year Follow-Up Study. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 36(4), 971-980. doi:10.1016/j.arthro.2019.11.120

Klimczak, A., Kozlowska, U., & Kurpisz, M. (2018). Muscle Stem/Progenitor Cells and Mesenchymal Stem Cells of Bone Marrow Origin for Skeletal Muscle Regeneration in Muscular Dystrophies. Archivum Immunologiae et Therapiae Experimentalis, 66(5), 341-354. doi:10.1007/s00005-018-0509-7

Ferreira, J. R., Teixeira, G. Q., Santos, S. G., Barbosa, M. A., Almeida-Porada, G., & Gonçalves, R. M. (2018). Mesenchymal Stromal Cell Secretome: Influencing Therapeutic Potential by Cellular Pre-conditioning. Frontiers in Immunology, 9. doi:10.3389/fimmu.2018.02837

Aggarwal, S., & Pittenger, M. F. (2005). Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood, 105(4), 1815-1822. doi:10.1182/blood-2004-04-1559

Ren, G., Zhang, L., Zhao, X., Xu, G., Zhang, Y., Roberts, A. I., … Shi, Y. (2008). Mesenchymal Stem Cell-Mediated Immunosuppression Occurs via Concerted Action of Chemokines and Nitric Oxide. Cell Stem Cell, 2(2), 141-150. doi:10.1016/j.stem.2007.11.014

Chabannes, D., Hill, M., Merieau, E., Rossignol, J., Brion, R., Soulillou, J. P., … Cuturi, M. C. (2007). A role for heme oxygenase-1 in the immunosuppressive effect of adult rat and human mesenchymal stem cells. Blood, 110(10), 3691-3694. doi:10.1182/blood-2007-02-075481

Bernardo, M. E., & Fibbe, W. E. (2013). Mesenchymal Stromal Cells: Sensors and Switchers of Inflammation. Cell Stem Cell, 13(4), 392-402. doi:10.1016/j.stem.2013.09.006

Selmani, Z., Naji, A., Zidi, I., Favier, B., Gaiffe, E., Obert, L., … Deschaseaux, F. (2008). Human Leukocyte Antigen-G5 Secretion by Human Mesenchymal Stem Cells Is Required to Suppress T Lymphocyte and Natural Killer Function and to Induce CD4+CD25highFOXP3+Regulatory T Cells. Stem Cells, 26(1), 212-222. doi:10.1634/stemcells.2007-0554

Di Nicola, M., Carlo-Stella, C., Magni, M., Milanesi, M., Longoni, P. D., Matteucci, P., … Gianni, A. M. (2002). Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood, 99(10), 3838-3843. doi:10.1182/blood.v99.10.3838

Gunawardena, T. N. A., Rahman, M. T., Abdullah, B. J. J., & Abu Kasim, N. H. (2019). Conditioned media derived from mesenchymal stem cell cultures: The next generation for regenerative medicine. Journal of Tissue Engineering and Regenerative Medicine, 13(4), 569-586. doi:10.1002/term.2806

Arslan, F., Lai, R. C., Smeets, M. B., Akeroyd, L., Choo, A., Aguor, E. N. E., … de Kleijn, D. P. (2013). Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Research, 10(3), 301-312. doi:10.1016/j.scr.2013.01.002

Tian, T., Wang, Y., Wang, H., Zhu, Z., & Xiao, Z. (2010). Visualizing of the cellular uptake and intracellular trafficking of exosomes by live-cell microscopy. Journal of Cellular Biochemistry, 111(2), 488-496. doi:10.1002/jcb.22733

Feng, D., Zhao, W.-L., Ye, Y.-Y., Bai, X.-C., Liu, R.-Q., Chang, L.-F., … Sui, S.-F. (2010). Cellular Internalization of Exosomes Occurs Through Phagocytosis. Traffic, 11(5), 675-687. doi:10.1111/j.1600-0854.2010.01041.x

Xu, J., Wang, Y., Hsu, C.-Y., Gao, Y., Meyers, C. A., Chang, L., … James, A. W. (2019). Human perivascular stem cell-derived extracellular vesicles mediate bone repair. eLife, 8. doi:10.7554/elife.48191

Morrison, T. J., Jackson, M. V., Cunningham, E. K., Kissenpfennig, A., McAuley, D. F., O’Kane, C. M., & Krasnodembskaya, A. D. (2017). Mesenchymal Stromal Cells Modulate Macrophages in Clinically Relevant Lung Injury Models by Extracellular Vesicle Mitochondrial Transfer. American Journal of Respiratory and Critical Care Medicine, 196(10), 1275-1286. doi:10.1164/rccm.201701-0170oc

Lener, T., Gimona, M., Aigner, L., Börger, V., Buzas, E., Camussi, G., … Portillo, H. A. del. (2015). Applying extracellular vesicles based therapeutics in clinical trials – an ISEV position paper. Journal of Extracellular Vesicles, 4(1), 30087. doi:10.3402/jev.v4.30087

Raposo, G., & Stoorvogel, W. (2013). Extracellular vesicles: Exosomes, microvesicles, and friends. Journal of Cell Biology, 200(4), 373-383. doi:10.1083/jcb.201211138

Qiu, G., Zheng, G., Ge, M., Wang, J., Huang, R., Shu, Q., & Xu, J. (2018). Mesenchymal stem cell-derived extracellular vesicles affect disease outcomes via transfer of microRNAs. Stem Cell Research & Therapy, 9(1). doi:10.1186/s13287-018-1069-9

Van Niel, G., D’Angelo, G., & Raposo, G. (2018). Shedding light on the cell biology of extracellular vesicles. Nature Reviews Molecular Cell Biology, 19(4), 213-228. doi:10.1038/nrm.2017.125

Lai, R. C., Tan, S. S., Yeo, R. W. Y., Choo, A. B. H., Reiner, A. T., Su, Y., … Lim, S. K. (2016). MSC secretes at least 3 EV types each with a unique permutation of membrane lipid, protein and RNA. Journal of Extracellular Vesicles, 5(1), 29828. doi:10.3402/jev.v5.29828

Théry, C., Witwer, K. W., Aikawa, E., Alcaraz, M. J., Anderson, J. D., Andriantsitohaina, R., … Atkin-Smith, G. K. (2018). Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 7(1), 1535750. doi:10.1080/20013078.2018.1535750

Tofiño-Vian, M., Guillén, M. I., & Alcaraz, M. J. (2018). Extracellular vesicles: A new therapeutic strategy for joint conditions. Biochemical Pharmacology, 153, 134-146. doi:10.1016/j.bcp.2018.02.004

Wong, D. E., Banyard, D. A., Santos, P. J. F., Sayadi, L. R., Evans, G. R. D., & Widgerow, A. D. (2019). Adipose-derived stem cell extracellular vesicles: A systematic review✰. Journal of Plastic, Reconstructive & Aesthetic Surgery, 72(7), 1207-1218. doi:10.1016/j.bjps.2019.03.008

Zhou, Y., Xu, H., Xu, W., Wang, B., Wu, H., Tao, Y., … Qian, H. (2013). Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro. Stem Cell Research & Therapy, 4(2), 34. doi:10.1186/scrt194

De Jong, O. G., Van Balkom, B. W. M., Schiffelers, R. M., Bouten, C. V. C., & Verhaar, M. C. (2014). Extracellular Vesicles: Potential Roles in Regenerative Medicine. Frontiers in Immunology, 5. doi:10.3389/fimmu.2014.00608

Robbins, P. D., & Morelli, A. E. (2014). Regulation of immune responses by extracellular vesicles. Nature Reviews Immunology, 14(3), 195-208. doi:10.1038/nri3622

Burrello, J., Monticone, S., Gai, C., Gomez, Y., Kholia, S., & Camussi, G. (2016). Stem Cell-Derived Extracellular Vesicles and Immune-Modulation. Frontiers in Cell and Developmental Biology, 4. doi:10.3389/fcell.2016.00083

Siegel, G., Schäfer, R., & Dazzi, F. (2009). The Immunosuppressive Properties of Mesenchymal Stem Cells. Transplantation, 87(Supplement), S45-S49. doi:10.1097/tp.0b013e3181a285b0

Fierabracci, A., Del Fattore, A., Luciano, R., Muraca, M., Teti, A., & Muraca, M. (2015). Recent Advances in Mesenchymal Stem Cell Immunomodulation: The Role of Microvesicles. Cell Transplantation, 24(2), 133-149. doi:10.3727/096368913x675728

Mokarizadeh, A., Delirezh, N., Morshedi, A., Mosayebi, G., Farshid, A.-A., & Mardani, K. (2012). Microvesicles derived from mesenchymal stem cells: Potent organelles for induction of tolerogenic signaling. Immunology Letters, 147(1-2), 47-54. doi:10.1016/j.imlet.2012.06.001

Conforti, A., Scarsella, M., Starc, N., Giorda, E., Biagini, S., Proia, A., … Bernardo, M. E. (2014). Microvescicles Derived from Mesenchymal Stromal Cells Are Not as Effective as Their Cellular Counterpart in the Ability to Modulate Immune Responses In Vitro. Stem Cells and Development, 23(21), 2591-2599. doi:10.1089/scd.2014.0091

Carreras-Planella, L., Monguió-Tortajada, M., Borràs, F. E., & Franquesa, M. (2019). Immunomodulatory Effect of MSC on B Cells Is Independent of Secreted Extracellular Vesicles. Frontiers in Immunology, 10. doi:10.3389/fimmu.2019.01288

Chen, W., Huang, Y., Han, J., Yu, L., Li, Y., Lu, Z., … Xiao, Y. (2016). Immunomodulatory effects of mesenchymal stromal cells-derived exosome. Immunologic Research, 64(4), 831-840. doi:10.1007/s12026-016-8798-6

Harting, M. T., Srivastava, A. K., Zhaorigetu, S., Bair, H., Prabhakara, K. S., Toledano Furman, N. E., … Olson, S. D. (2017). Inflammation-Stimulated Mesenchymal Stromal Cell-Derived Extracellular Vesicles Attenuate Inflammation. STEM CELLS, 36(1), 79-90. doi:10.1002/stem.2730

Reis, M., Mavin, E., Nicholson, L., Green, K., Dickinson, A. M., & Wang, X. (2018). Mesenchymal Stromal Cell-Derived Extracellular Vesicles Attenuate Dendritic Cell Maturation and Function. Frontiers in Immunology, 9. doi:10.3389/fimmu.2018.02538

Ji, L., Bao, L., Gu, Z., Zhou, Q., Liang, Y., Zheng, Y., … Feng, X. (2019). Comparison of immunomodulatory properties of exosomes derived from bone marrow mesenchymal stem cells and dental pulp stem cells. Immunologic Research, 67(4-5), 432-442. doi:10.1007/s12026-019-09088-6

Blazquez, R., Sanchez-Margallo, F. M., de la Rosa, O., Dalemans, W., Ã lvarez, V., Tarazona, R., & Casado, J. G. (2014). Immunomodulatory Potential of Human Adipose Mesenchymal Stem Cells Derived Exosomes on in vitro Stimulated T Cells. Frontiers in Immunology, 5. doi:10.3389/fimmu.2014.00556

Zhang, B., Yin, Y., Lai, R. C., Tan, S. S., Choo, A. B. H., & Lim, S. K. (2014). Mesenchymal Stem Cells Secrete Immunologically Active Exosomes. Stem Cells and Development, 23(11), 1233-1244. doi:10.1089/scd.2013.0479

Zhang, B., Yeo, R. W. Y., Lai, R. C., Sim, E. W. K., Chin, K. C., & Lim, S. K. (2018). Mesenchymal stromal cell exosome–enhanced regulatory T-cell production through an antigen-presenting cell–mediated pathway. Cytotherapy, 20(5), 687-696. doi:10.1016/j.jcyt.2018.02.372

TOH, W. S., ZHANG, B., LAI, R. C., & LIM, S. K. (2018). Immune regulatory targets of mesenchymal stromal cell exosomes/small extracellular vesicles in tissue regeneration. Cytotherapy, 20(12), 1419-1426. doi:10.1016/j.jcyt.2018.09.008

Budoni, M., Fierabracci, A., Luciano, R., Petrini, S., Di Ciommo, V., & Muraca, M. (2013). The Immunosuppressive Effect of Mesenchymal Stromal Cells on B Lymphocytes is Mediated by Membrane Vesicles. Cell Transplantation, 22(2), 369-379. doi:10.3727/096368911x582769b

Di Trapani, M., Bassi, G., Midolo, M., Gatti, A., Takam Kamga, P., Cassaro, A., … Krampera, M. (2016). Differential and transferable modulatory effects of mesenchymal stromal cell-derived extracellular vesicles on T, B and NK cell functions. Scientific Reports, 6(1). doi:10.1038/srep24120

Henao Agudelo, J. S., Braga, T. T., Amano, M. T., Cenedeze, M. A., Cavinato, R. A., Peixoto-Santos, A. R., … Camara, N. O. S. (2017). Mesenchymal Stromal Cell-Derived Microvesicles Regulate an Internal Pro-Inflammatory Program in Activated Macrophages. Frontiers in Immunology, 8. doi:10.3389/fimmu.2017.00881

Lo Sicco, C., Reverberi, D., Balbi, C., Ulivi, V., Principi, E., Pascucci, L., … Tasso, R. (2017). Mesenchymal Stem Cell-Derived Extracellular Vesicles as Mediators of Anti-Inflammatory Effects: Endorsement of Macrophage Polarization. STEM CELLS Translational Medicine, 6(3), 1018-1028. doi:10.1002/sctm.16-0363

Ti, D., Hao, H., Tong, C., Liu, J., Dong, L., Zheng, J., … Han, W. (2015). LPS-preconditioned mesenchymal stromal cells modify macrophage polarization for resolution of chronic inflammation via exosome-shuttled let-7b. Journal of Translational Medicine, 13(1). doi:10.1186/s12967-015-0642-6

Firestein, G. S. (2003). Evolving concepts of rheumatoid arthritis. Nature, 423(6937), 356-361. doi:10.1038/nature01661

Goronzy, J. J., & Weyand, C. M. (2009). Developments in the scientific understanding of rheumatoid arthritis. Arthritis Research & Therapy, 11(5), 249. doi:10.1186/ar2758

Casado, J. G., Blázquez, R., Vela, F. J., Álvarez, V., Tarazona, R., & Sánchez-Margallo, F. M. (2017). Mesenchymal Stem Cell-Derived Exosomes: Immunomodulatory Evaluation in an Antigen-Induced Synovitis Porcine Model. Frontiers in Veterinary Science, 4. doi:10.3389/fvets.2017.00039

Cosenza, S., Toupet, K., Maumus, M., Luz-Crawford, P., Blanc-Brude, O., Jorgensen, C., & Noël, D. (2018). Mesenchymal stem cells-derived exosomes are more immunosuppressive than microparticles in inflammatory arthritis. Theranostics, 8(5), 1399-1410. doi:10.7150/thno.21072

Yang, Y., Hutchinson, P., & Morand, E. F. (1999). Inhibitory effect of annexin I on synovial inflammation in rat adjuvant arthritis. Arthritis & Rheumatism, 42(7), 1538-1544. doi:10.1002/1529-0131(199907)42:7<1538::aid-anr29>3.0.co;2-3

Headland, S. E., Jones, H. R., Norling, L. V., Kim, A., Souza, P. R., Corsiero, E., … Perretti, M. (2015). Neutrophil-derived microvesicles enter cartilage and protect the joint in inflammatory arthritis. Science Translational Medicine, 7(315), 315ra190-315ra190. doi:10.1126/scitranslmed.aac5608

Tofiño-Vian, M., Guillén, M. I., Pérez del Caz, M. D., Silvestre, A., & Alcaraz, M. J. (2018). Microvesicles from Human Adipose Tissue-Derived Mesenchymal Stem Cells as a New Protective Strategy in Osteoarthritic Chondrocytes. Cellular Physiology and Biochemistry, 47(1), 11-25. doi:10.1159/000489739

Ando, Y., Matsubara, K., Ishikawa, J., Fujio, M., Shohara, R., Hibi, H., … Yamamoto, A. (2014). Stem cell-conditioned medium accelerates distraction osteogenesis through multiple regenerative mechanisms. Bone, 61, 82-90. doi:10.1016/j.bone.2013.12.029

Lu, Z., Chen, Y., Dunstan, C., Roohani-Esfahani, S., & Zreiqat, H. (2017). Priming Adipose Stem Cells with Tumor Necrosis Factor-Alpha Preconditioning Potentiates Their Exosome Efficacy for Bone Regeneration. Tissue Engineering Part A, 23(21-22), 1212-1220. doi:10.1089/ten.tea.2016.0548

Qin, Y., Wang, L., Gao, Z., Chen, G., & Zhang, C. (2016). Bone marrow stromal/stem cell-derived extracellular vesicles regulate osteoblast activity and differentiation in vitro and promote bone regeneration in vivo. Scientific Reports, 6(1). doi:10.1038/srep21961

Wang, X., Omar, O., Vazirisani, F., Thomsen, P., & Ekström, K. (2018). Mesenchymal stem cell-derived exosomes have altered microRNA profiles and induce osteogenic differentiation depending on the stage of differentiation. PLOS ONE, 13(2), e0193059. doi:10.1371/journal.pone.0193059

Shirley, D., Marsh, D., Jordan, G., McQuaid, S., & Li, G. (2005). Systemic recruitment of osteoblastic cells in fracture healing. Journal of Orthopaedic Research, 23(5), 1013-1021. doi:10.1016/j.orthres.2005.01.013

Lee, D. Y., Cho, T.-J., Kim, J. A., Lee, H. R., Yoo, W. J., Chung, C. Y., & Choi, I. H. (2008). Mobilization of endothelial progenitor cells in fracture healing and distraction osteogenesis. Bone, 42(5), 932-941. doi:10.1016/j.bone.2008.01.007

Furuta, T., Miyaki, S., Ishitobi, H., Ogura, T., Kato, Y., Kamei, N., … Ochi, M. (2016). Mesenchymal Stem Cell-Derived Exosomes Promote Fracture Healing in a Mouse Model. STEM CELLS Translational Medicine, 5(12), 1620-1630. doi:10.5966/sctm.2015-0285

Li, W., Liu, Y., Zhang, P., Tang, Y., Zhou, M., Jiang, W., … Zhou, Y. (2018). Tissue-Engineered Bone Immobilized with Human Adipose Stem Cells-Derived Exosomes Promotes Bone Regeneration. ACS Applied Materials & Interfaces, 10(6), 5240-5254. doi:10.1021/acsami.7b17620

Hirschi, K. K., Li, S., & Roy, K. (2014). Induced Pluripotent Stem Cells for Regenerative Medicine. Annual Review of Biomedical Engineering, 16(1), 277-294. doi:10.1146/annurev-bioeng-071813-105108

Sabapathy, V., & Kumar, S. (2016). hi PSC ‐derived iMSC s: NextGen MSC s as an advanced therapeutically active cell resource for regenerative medicine. Journal of Cellular and Molecular Medicine, 20(8), 1571-1588. doi:10.1111/jcmm.12839

Zhang, J., Liu, X., Li, H., Chen, C., Hu, B., Niu, X., … Wang, Y. (2016). Exosomes/tricalcium phosphate combination scaffolds can enhance bone regeneration by activating the PI3K/Akt signaling pathway. Stem Cell Research & Therapy, 7(1). doi:10.1186/s13287-016-0391-3

Narayanan, R., Huang, C.-C., & Ravindran, S. (2016). Hijacking the Cellular Mail: Exosome Mediated Differentiation of Mesenchymal Stem Cells. Stem Cells International, 2016, 1-11. doi:10.1155/2016/3808674

Zhu, Y., Jia, Y., Wang, Y., Xu, J., & Chai, Y. (2019). Impaired Bone Regenerative Effect of Exosomes Derived from Bone Marrow Mesenchymal Stem Cells in Type 1 Diabetes. STEM CELLS Translational Medicine, 8(6), 593-605. doi:10.1002/sctm.18-0199

Ferreira, E., & Porter, R. M. (2018). Harnessing extracellular vesicles to direct endochondral repair of large bone defects. Bone & Joint Research, 7(4), 263-273. doi:10.1302/2046-3758.74.bjr-2018-0006

Moya, A., Paquet, J., Deschepper, M., Larochette, N., Oudina, K., Denoeud, C., … Petite, H. (2018). Human Mesenchymal Stem Cell Failure to Adapt to Glucose Shortage and Rapidly Use Intracellular Energy Reserves Through Glycolysis Explains Poor Cell Survival After Implantation. STEM CELLS, 36(3), 363-376. doi:10.1002/stem.2763

Moya, A., Larochette, N., Paquet, J., Deschepper, M., Bensidhoum, M., Izzo, V., … Logeart-Avramoglou, D. (2016). Quiescence Preconditioned Human Multipotent Stromal Cells Adopt a Metabolic Profile Favorable for Enhanced Survival under Ischemia. STEM CELLS, 35(1), 181-196. doi:10.1002/stem.2493

Potier, E., Ferreira, E., Andriamanalijaona, R., Pujol, J.-P., Oudina, K., Logeart-Avramoglou, D., & Petite, H. (2007). Hypoxia affects mesenchymal stromal cell osteogenic differentiation and angiogenic factor expression. Bone, 40(4), 1078-1087. doi:10.1016/j.bone.2006.11.024

Jia, Y., Zhu, Y., Qiu, S., Xu, J., & Chai, Y. (2019). Exosomes secreted by endothelial progenitor cells accelerate bone regeneration during distraction osteogenesis by stimulating angiogenesis. Stem Cell Research & Therapy, 10(1). doi:10.1186/s13287-018-1115-7

Zhang, Y., Hao, Z., Wang, P., Xia, Y., Wu, J., Xia, D., … Xu, S. (2019). Exosomes from human umbilical cord mesenchymal stem cells enhance fracture healing through HIF‐1α‐mediated promotion of angiogenesis in a rat model of stabilized fracture. Cell Proliferation, 52(2), e12570. doi:10.1111/cpr.12570

Qi, X., Zhang, J., Yuan, H., Xu, Z., Li, Q., Niu, X., … Li, X. (2016). Exosomes Secreted by Human-Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells Repair Critical-Sized Bone Defects through Enhanced Angiogenesis and Osteogenesis in Osteoporotic Rats. International Journal of Biological Sciences, 12(7), 836-849. doi:10.7150/ijbs.14809

Chen, C.-Y., Rao, S.-S., Tan, Y.-J., Luo, M.-J., Hu, X.-K., Yin, H., … Xie, H. (2019). Extracellular vesicles from human urine-derived stem cells prevent osteoporosis by transferring CTHRC1 and OPG. Bone Research, 7(1). doi:10.1038/s41413-019-0056-9

Hu, Y., Xu, R., Chen, C.-Y., Rao, S.-S., Xia, K., Huang, J., … Xie, H. (2019). Extracellular vesicles from human umbilical cord blood ameliorate bone loss in senile osteoporotic mice. Metabolism, 95, 93-101. doi:10.1016/j.metabol.2019.01.009

Ren, L., Song, Z., Cai, Q., Chen, R., Zou, Y., Fu, Q., & Ma, Y. (2019). Adipose mesenchymal stem cell-derived exosomes ameliorate hypoxia/serum deprivation-induced osteocyte apoptosis and osteocyte-mediated osteoclastogenesis in vitro. Biochemical and Biophysical Research Communications, 508(1), 138-144. doi:10.1016/j.bbrc.2018.11.109

Guo, S.-C., Tao, S.-C., Yin, W.-J., Qi, X., Sheng, J.-G., & Zhang, C.-Q. (2016). Exosomes from Human Synovial-Derived Mesenchymal Stem Cells Prevent Glucocorticoid-Induced Osteonecrosis of the Femoral Head in the Rat. International Journal of Biological Sciences, 12(10), 1262-1272. doi:10.7150/ijbs.16150

Liu, X., Li, Q., Niu, X., Hu, B., Chen, S., Song, W., … Wang, Y. (2017). Exosomes Secreted from Human-Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells Prevent Osteonecrosis of the Femoral Head by Promoting Angiogenesis. International Journal of Biological Sciences, 13(2), 232-244. doi:10.7150/ijbs.16951

Wang, Y., Wan, C., Deng, L., Liu, X., Cao, X., Gilbert, S. R., … Clemens, T. L. (2007). The hypoxia-inducible factor α pathway couples angiogenesis to osteogenesis during skeletal development. Journal of Clinical Investigation, 117(6), 1616-1626. doi:10.1172/jci31581

Kim, H.-H., Lee, S. E., Chung, W. J., Choi, Y., Kwack, K., Kim, S. W., … Lee, Z. H. (2002). STABILIZATION OF HYPOXIA-INDUCIBLE FACTOR-1α IS INVOLVED IN THE HYPOXIC STIMULI-INDUCED EXPRESSION OF VASCULAR ENDOTHELIAL GROWTH FACTOR IN OSTEOBLASTIC CELLS. Cytokine, 17(1), 14-27. doi:10.1006/cyto.2001.0985

Li, H., Liu, D., Li, C., Zhou, S., Tian, D., Xiao, D., … Huang, J. (2017). Exosomes secreted from mutant-HIF-1α-modified bone-marrow-derived mesenchymal stem cells attenuate early steroid-induced avascular necrosis of femoral head in rabbit. Cell Biology International, 41(12), 1379-1390. doi:10.1002/cbin.10869

Tassi, S. A., Sergio, N. Z., Misawa, M. Y. O., & Villar, C. C. (2017). Efficacy of stem cells on periodontal regeneration: Systematic review of pre-clinical studies. Journal of Periodontal Research, 52(5), 793-812. doi:10.1111/jre.12455

Slots, J. (2017). Periodontitis: facts, fallacies and the future. Periodontology 2000, 75(1), 7-23. doi:10.1111/prd.12221

Kawai, T., Matsuyama, T., Hosokawa, Y., Makihira, S., Seki, M., Karimbux, N. Y., … Taubman, M. A. (2006). B and T Lymphocytes Are the Primary Sources of RANKL in the Bone Resorptive Lesion of Periodontal Disease. The American Journal of Pathology, 169(3), 987-998. doi:10.2353/ajpath.2006.060180

Kawai, T., Katagiri, W., Osugi, M., Sugimura, Y., Hibi, H., & Ueda, M. (2015). Secretomes from bone marrow–derived mesenchymal stromal cells enhance periodontal tissue regeneration. Cytotherapy, 17(4), 369-381. doi:10.1016/j.jcyt.2014.11.009

Katagiri, W., Osugi, M., Kawai, T., & Hibi, H. (2016). First-in-human study and clinical case reports of the alveolar bone regeneration with the secretome from human mesenchymal stem cells. Head & Face Medicine, 12(1). doi:10.1186/s13005-016-0101-5

Chew, J. R. J., Chuah, S. J., Teo, K. Y. W., Zhang, S., Lai, R. C., Fu, J. H., … Toh, W. S. (2019). Mesenchymal stem cell exosomes enhance periodontal ligament cell functions and promote periodontal regeneration. Acta Biomaterialia, 89, 252-264. doi:10.1016/j.actbio.2019.03.021

Pethő, A., Chen, Y., & George, A. (2018). Exosomes in Extracellular Matrix Bone Biology. Current Osteoporosis Reports, 16(1), 58-64. doi:10.1007/s11914-018-0419-y

Liu, M., Sun, Y., & Zhang, Q. (2018). Emerging Role of Extracellular Vesicles in Bone Remodeling. Journal of Dental Research, 97(8), 859-868. doi:10.1177/0022034518764411

Cooke, M. E., Allon, A. A., Cheng, T., Kuo, A. C., Kim, H. T., Vail, T. P., … Alliston, T. (2011). Structured three-dimensional co-culture of mesenchymal stem cells with chondrocytes promotes chondrogenic differentiation without hypertrophy. Osteoarthritis and Cartilage, 19(10), 1210-1218. doi:10.1016/j.joca.2011.07.005

De Windt, T. S., Vonk, L. A., Slaper-Cortenbach, I. C. M., van den Broek, M. P. H., Nizak, R., van Rijen, M. H. P., … Saris, D. B. F. (2016). Allogeneic Mesenchymal Stem Cells Stimulate Cartilage Regeneration and Are Safe for Single-Stage Cartilage Repair in Humans upon Mixture with Recycled Autologous Chondrons. STEM CELLS, 35(1), 256-264. doi:10.1002/stem.2475

Kim, M., Steinberg, D. R., Burdick, J. A., & Mauck, R. L. (2019). Extracellular vesicles mediate improved functional outcomes in engineered cartilage produced from MSC/chondrocyte cocultures. Proceedings of the National Academy of Sciences, 116(5), 1569-1578. doi:10.1073/pnas.1815447116

Swärd, P., Frobell, R., Englund, M., Roos, H., & Struglics, A. (2012). Cartilage and bone markers and inflammatory cytokines are increased in synovial fluid in the acute phase of knee injury (hemarthrosis) – a cross-sectional analysis. Osteoarthritis and Cartilage, 20(11), 1302-1308. doi:10.1016/j.joca.2012.07.021

Swärd, P., Struglics, A., Englund, M., Roos, H. P., & Frobell, R. B. (2014). Soft Tissue Knee Injury With Concomitant Osteochondral Fracture Is Associated With Higher Degree of Acute Joint Inflammation. The American Journal of Sports Medicine, 42(5), 1096-1102. doi:10.1177/0363546514524924

Kapoor, M., Martel-Pelletier, J., Lajeunesse, D., Pelletier, J.-P., & Fahmi, H. (2010). Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nature Reviews Rheumatology, 7(1), 33-42. doi:10.1038/nrrheum.2010.196

Lieberthal, J., Sambamurthy, N., & Scanzello, C. R. (2015). Inflammation in joint injury and post-traumatic osteoarthritis. Osteoarthritis and Cartilage, 23(11), 1825-1834. doi:10.1016/j.joca.2015.08.015

Ragni, E., Perucca Orfei, C., De Luca, P., Lugano, G., Viganò, M., Colombini, A., … de Girolamo, L. (2019). Interaction with hyaluronan matrix and miRNA cargo as contributors for in vitro potential of mesenchymal stem cell-derived extracellular vesicles in a model of human osteoarthritic synoviocytes. Stem Cell Research & Therapy, 10(1). doi:10.1186/s13287-019-1215-z

Vonk, L. A., van Dooremalen, S. F. J., Liv, N., Klumperman, J., Coffer, P. J., Saris, D. B. F., & Lorenowicz, M. J. (2018). Mesenchymal Stromal/stem Cell-derived Extracellular Vesicles Promote Human Cartilage Regeneration In Vitro. Theranostics, 8(4), 906-920. doi:10.7150/thno.20746

Tofiño-Vian, M., Guillén, M. I., Pérez del Caz, M. D., Castejón, M. A., & Alcaraz, M. J. (2017). Extracellular Vesicles from Adipose-Derived Mesenchymal Stem Cells Downregulate Senescence Features in Osteoarthritic Osteoblasts. Oxidative Medicine and Cellular Longevity, 2017, 1-12. doi:10.1155/2017/7197598

Zhang, S., Chuah, S. J., Lai, R. C., Hui, J. H. P., Lim, S. K., & Toh, W. S. (2018). MSC exosomes mediate cartilage repair by enhancing proliferation, attenuating apoptosis and modulating immune reactivity. Biomaterials, 156, 16-27. doi:10.1016/j.biomaterials.2017.11.028

Zhang, S., Chu, W. C., Lai, R. C., Lim, S. K., Hui, J. H. P., & Toh, W. S. (2016). Exosomes derived from human embryonic mesenchymal stem cells promote osteochondral regeneration. Osteoarthritis and Cartilage, 24(12), 2135-2140. doi:10.1016/j.joca.2016.06.022

Liu, X., Yang, Y., Li, Y., Niu, X., Zhao, B., Wang, Y., … Zhu, L. (2017). Integration of stem cell-derived exosomes with in situ hydrogel glue as a promising tissue patch for articular cartilage regeneration. Nanoscale, 9(13), 4430-4438. doi:10.1039/c7nr00352h

Chen, P., Zheng, L., Wang, Y., Tao, M., Xie, Z., Xia, C., … Lin, X. (2019). Desktop-stereolithography 3D printing of a radially oriented extracellular matrix/mesenchymal stem cell exosome bioink for osteochondral defect regeneration. Theranostics, 9(9), 2439-2459. doi:10.7150/thno.31017

Wang, A.-T., Feng, Y., Jia, H.-H., Zhao, M., & Yu, H. (2019). Application of mesenchymal stem cell therapy for the treatment of osteoarthritis of the knee: A concise review. World Journal of Stem Cells, 11(4), 222-235. doi:10.4252/wjsc.v11.i4.222

Torres-Torrillas, M., Rubio, M., Damia, E., Cuervo, B., del Romero, A., Peláez, P., … Sopena, J. J. (2019). Adipose-Derived Mesenchymal Stem Cells: A Promising Tool in the Treatment of Musculoskeletal Diseases. International Journal of Molecular Sciences, 20(12), 3105. doi:10.3390/ijms20123105

Wang, Y., Yu, D., Liu, Z., Zhou, F., Dai, J., Wu, B., … Liu, H. (2017). Exosomes from embryonic mesenchymal stem cells alleviate osteoarthritis through balancing synthesis and degradation of cartilage extracellular matrix. Stem Cell Research & Therapy, 8(1). doi:10.1186/s13287-017-0632-0

Wu, J., Kuang, L., Chen, C., Yang, J., Zeng, W.-N., Li, T., … Yang, L. (2019). miR-100-5p-abundant exosomes derived from infrapatellar fat pad MSCs protect articular cartilage and ameliorate gait abnormalities via inhibition of mTOR in osteoarthritis. Biomaterials, 206, 87-100. doi:10.1016/j.biomaterials.2019.03.022

Zhu, Y., Wang, Y., Zhao, B., Niu, X., Hu, B., Li, Q., … Wang, Y. (2017). Comparison of exosomes secreted by induced pluripotent stem cell-derived mesenchymal stem cells and synovial membrane-derived mesenchymal stem cells for the treatment of osteoarthritis. Stem Cell Research & Therapy, 8(1). doi:10.1186/s13287-017-0510-9

Cui, D., Li, H., Xu, X., Ye, L., Zhou, X., Zheng, L., & Zhou, Y. (2017). Mesenchymal Stem Cells for Cartilage Regeneration of TMJ Osteoarthritis. Stem Cells International, 2017, 1-11. doi:10.1155/2017/5979741

Wang, X. D., Zhang, J. N., Gan, Y. H., & Zhou, Y. H. (2015). Current Understanding of Pathogenesis and Treatment of TMJ Osteoarthritis. Journal of Dental Research, 94(5), 666-673. doi:10.1177/0022034515574770

Chen, K., Man, C., Zhang, B., Hu, J., & Zhu, S.-S. (2013). Effect of in vitro chondrogenic differentiation of autologous mesenchymal stem cells on cartilage and subchondral cancellous bone repair in osteoarthritis of temporomandibular joint. International Journal of Oral and Maxillofacial Surgery, 42(2), 240-248. doi:10.1016/j.ijom.2012.05.030

Zhang, S., Teo, K. Y. W., Chuah, S. J., Lai, R. C., Lim, S. K., & Toh, W. S. (2019). MSC exosomes alleviate temporomandibular joint osteoarthritis by attenuating inflammation and restoring matrix homeostasis. Biomaterials, 200, 35-47. doi:10.1016/j.biomaterials.2019.02.006

Luo, P., Jiang, C., Ji, P., Wang, M., & Xu, J. (2019). Exosomes of stem cells from human exfoliated deciduous teeth as an anti-inflammatory agent in temporomandibular joint chondrocytes via miR-100-5p/mTOR. Stem Cell Research & Therapy, 10(1). doi:10.1186/s13287-019-1341-7

Park, K.-S., Bandeira, E., Shelke, G. V., Lässer, C., & Lötvall, J. (2019). Enhancement of therapeutic potential of mesenchymal stem cell-derived extracellular vesicles. Stem Cell Research & Therapy, 10(1). doi:10.1186/s13287-019-1398-3

Meng, F., Zhang, Z., Chen, W., Huang, G., He, A., Hou, C., … Liao, W. (2016). MicroRNA-320 regulates matrix metalloproteinase-13 expression in chondrogenesis and interleukin-1β-induced chondrocyte responses. Osteoarthritis and Cartilage, 24(5), 932-941. doi:10.1016/j.joca.2015.12.012

Sun, H., Hu, S., Zhang, Z., Lun, J., Liao, W., & Zhang, Z. (2018). Expression of exosomal microRNAs during chondrogenic differentiation of human bone mesenchymal stem cells. Journal of Cellular Biochemistry, 120(1), 171-181. doi:10.1002/jcb.27289

Mao, G., Zhang, Z., Hu, S., Zhang, Z., Chang, Z., Huang, Z., … Kang, Y. (2018). Exosomes derived from miR-92a-3p-overexpressing human mesenchymal stem cells enhance chondrogenesis and suppress cartilage degradation via targeting WNT5A. Stem Cell Research & Therapy, 9(1). doi:10.1186/s13287-018-1004-0

Wang, R., Xu, B., & Xu, H. (2018). TGF-β1 promoted chondrocyte proliferation by regulating Sp1 through MSC-exosomes derived miR-135b. Cell Cycle, 17(24), 2756-2765. doi:10.1080/15384101.2018.1556063

Huang, X., Qiao, F., & Xue, P. (2019). The protective role of microRNA-140-5p in synovial injury of rats with knee osteoarthritis via inactivating the TLR4/Myd88/NF-κB signaling pathway. Cell Cycle, 18(18), 2344-2358. doi:10.1080/15384101.2019.1647025

Tao, S.-C., Yuan, T., Zhang, Y.-L., Yin, W.-J., Guo, S.-C., & Zhang, C.-Q. (2017). Exosomes derived from miR-140-5p-overexpressing human synovial mesenchymal stem cells enhance cartilage tissue regeneration and prevent osteoarthritis of the knee in a rat model. Theranostics, 7(1), 180-195. doi:10.7150/thno.17133

Liu, Y., Zou, R., Wang, Z., Wen, C., Zhang, F., & Lin, F. (2018). Exosomal KLF3-AS1 from hMSCs promoted cartilage repair and chondrocyte proliferation in osteoarthritis. Biochemical Journal, 475(22), 3629-3638. doi:10.1042/bcj20180675

Liu, Y., Lin, L., Zou, R., Wen, C., Wang, Z., & Lin, F. (2018). MSC-derived exosomes promote proliferation and inhibit apoptosis of chondrocytes via lncRNA-KLF3-AS1/miR-206/GIT1 axis in osteoarthritis. Cell Cycle, 17(21-22), 2411-2422. doi:10.1080/15384101.2018.1526603

Risbud, M. V., & Shapiro, I. M. (2013). Role of cytokines in intervertebral disc degeneration: pain and disc content. Nature Reviews Rheumatology, 10(1), 44-56. doi:10.1038/nrrheum.2013.160

Heathfield, S., Le Maitre, C., & Hoyland, J. (2008). Caveolin-1 expression and stress-induced premature senescence in human intervertebral disc degeneration. Arthritis Research & Therapy, 10(4), R87. doi:10.1186/ar2468

Wang, J., Tian, Y., Phillips, K. L. E., Chiverton, N., Haddock, G., Bunning, R. A., … Risbud, M. V. (2013). Tumor necrosis factor α- and interleukin-1β-dependent induction of CCL3 expression by nucleus pulposus cells promotes macrophage migration through CCR1. Arthritis & Rheumatism, 65(3), 832-842. doi:10.1002/art.37819

Han, Y., Li, X., Yan, M., Yang, M., Wang, S., Pan, J., … Tan, J. (2019). Oxidative damage induces apoptosis and promotes calcification in disc cartilage endplate cell through ROS/MAPK/NF-κB pathway: Implications for disc degeneration. Biochemical and Biophysical Research Communications, 516(3), 1026-1032. doi:10.1016/j.bbrc.2017.03.111

Risbud, M. V., Shapiro, I. M., Vaccaro, A. R., & Albert, T. J. (2004). Stem cell regeneration of the nucleus pulposus. The Spine Journal, 4(6), S348-S353. doi:10.1016/j.spinee.2004.07.031

Cheng, X., Zhang, G., Zhang, L., Hu, Y., Zhang, K., Sun, X., … Zhao, J. (2017). Mesenchymal stem cells deliver exogenous miR-21viaexosomes to inhibit nucleus pulposus cell apoptosis and reduce intervertebral disc degeneration. Journal of Cellular and Molecular Medicine, 22(1), 261-276. doi:10.1111/jcmm.13316

Ma, C.-J., Liu, X., Che, L., Liu, Z.-H., Samartzis, D., & Wang, H.-Q. (2015). Stem Cell Therapies for Intervertebral Disc Degeneration: Immune Privilege Reinforcement by Fas/FasL Regulating Machinery. Current Stem Cell Research & Therapy, 10(4), 285-295. doi:10.2174/1574888x10666150416114027

Krock, E., Rosenzweig, D., & Haglund, L. (2015). The Inflammatory Milieu of the Degenerate Disc: Is Mesenchymal Stem Cell-based Therapy for Intervertebral Disc Repair a Feasible Approach? Current Stem Cell Research & Therapy, 10(4), 317-328. doi:10.2174/1574888x10666150211161956

Liao, Z., Luo, R., Li, G., Song, Y., Zhan, S., Zhao, K., … Yang, C. (2019). Exosomes from mesenchymal stem cells modulate endoplasmic reticulum stress to protect against nucleus pulposus cell death and ameliorate intervertebral disc degeneration in vivo. Theranostics, 9(14), 4084-4100. doi:10.7150/thno.33638

Lan, W., Pan, S., Li, H., Sun, C., Chang, X., Lu, K., … Li, C. (2019). Inhibition of the Notch1 Pathway Promotes the Effects of Nucleus Pulposus Cell-Derived Exosomes on the Differentiation of Mesenchymal Stem Cells into Nucleus Pulposus-Like Cells in Rats. Stem Cells International, 2019, 1-12. doi:10.1155/2019/8404168

Lu, K., Li, H., Yang, K., Wu, J., Cai, X., Zhou, Y., & Li, C. (2017). Exosomes as potential alternatives to stem cell therapy for intervertebral disc degeneration: in-vitro study on exosomes in interaction of nucleus pulposus cells and bone marrow mesenchymal stem cells. Stem Cell Research & Therapy, 8(1). doi:10.1186/s13287-017-0563-9

Dezawa, M. (2005). Bone Marrow Stromal Cells Generate Muscle Cells and Repair Muscle Degeneration. Science, 309(5732), 314-317. doi:10.1126/science.1110364

Mellows, B., Mitchell, R., Antonioli, M., Kretz, O., Chambers, D., Zeuner, M.-T., … Patel, K. (2017). Protein and Molecular Characterization of a Clinically Compliant Amniotic Fluid Stem Cell-Derived Extracellular Vesicle Fraction Capable of Accelerating Muscle Regeneration Through Enhancement of Angiogenesis. Stem Cells and Development, 26(18), 1316-1333. doi:10.1089/scd.2017.0089

Mitchell, R., Mellows, B., Sheard, J., Antonioli, M., Kretz, O., Chambers, D., … Patel, K. (2019). Secretome of adipose-derived mesenchymal stem cells promotes skeletal muscle regeneration through synergistic action of extracellular vesicle cargo and soluble proteins. Stem Cell Research & Therapy, 10(1). doi:10.1186/s13287-019-1213-1

Nakamura, Y., Miyaki, S., Ishitobi, H., Matsuyama, S., Nakasa, T., Kamei, N., … Ochi, M. (2015). Mesenchymal-stem-cell-derived exosomes accelerate skeletal muscle regeneration. FEBS Letters, 589(11), 1257-1265. doi:10.1016/j.febslet.2015.03.031

Wang, C., Song, W., Chen, B., Liu, X., & He, Y. (2019). Exosomes Isolated From Adipose-Derived Stem Cells: A New Cell-Free Approach to Prevent the Muscle Degeneration Associated With Torn Rotator Cuffs. The American Journal of Sports Medicine, 47(13), 3247-3255. doi:10.1177/0363546519876323

Shen, H., Yoneda, S., Abu‐Amer, Y., Guilak, F., & Gelberman, R. H. (2019). Stem cell‐derived extracellular vesicles attenuate the early inflammatory response after tendon injury and repair. Journal of Orthopaedic Research, 38(1), 117-127. doi:10.1002/jor.24406

Chamberlain, C. S., Clements, A. E. B., Kink, J. A., Choi, U., Baer, G. S., Halanski, M. A., … Vanderby, R. (2019). Extracellular Vesicle-Educated Macrophages Promote Early Achilles Tendon Healing. STEM CELLS, 37(5), 652-662. doi:10.1002/stem.2988

Le Blanc, K., & Davies, L. C. (2018). MSCs—cells with many sides. Cytotherapy, 20(3), 273-278. doi:10.1016/j.jcyt.2018.01.009

Christy, B. A., Herzig, M. C., Montgomery, R. K., Delavan, C., Bynum, J. A., Reddoch, K. M., & Cap, A. P. (2017). Procoagulant activity of human mesenchymal stem cells. Journal of Trauma and Acute Care Surgery, 83, S164-S169. doi:10.1097/ta.0000000000001485

Toh, W. S., Lai, R. C., Hui, J. H. P., & Lim, S. K. (2017). MSC exosome as a cell-free MSC therapy for cartilage regeneration: Implications for osteoarthritis treatment. Seminars in Cell & Developmental Biology, 67, 56-64. doi:10.1016/j.semcdb.2016.11.008

Witwer, K. W., Van Balkom, B. W. M., Bruno, S., Choo, A., Dominici, M., Gimona, M., … Lim, S. K. (2019). Defining mesenchymal stromal cell (MSC)-derived small extracellular vesicles for therapeutic applications. Journal of Extracellular Vesicles, 8(1), 1609206. doi:10.1080/20013078.2019.1609206

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record