Musculoskeletal Conditions https://www.who. int/news-room/fact-sheets/detail/musculoskeletal-conditions
Hofer, H. R., & Tuan, R. S. (2016). Secreted trophic factors of mesenchymal stem cells support neurovascular and musculoskeletal therapies. Stem Cell Research & Therapy, 7(1). doi:10.1186/s13287-016-0394-0
Wang, L., Wang, L., Cong, X., Liu, G., Zhou, J., Bai, B., … Liu, Y. (2013). Human Umbilical Cord Mesenchymal Stem Cell Therapy for Patients with Active Rheumatoid Arthritis: Safety and Efficacy. Stem Cells and Development, 22(24), 3192-3202. doi:10.1089/scd.2013.0023
[+]
Musculoskeletal Conditions https://www.who. int/news-room/fact-sheets/detail/musculoskeletal-conditions
Hofer, H. R., & Tuan, R. S. (2016). Secreted trophic factors of mesenchymal stem cells support neurovascular and musculoskeletal therapies. Stem Cell Research & Therapy, 7(1). doi:10.1186/s13287-016-0394-0
Wang, L., Wang, L., Cong, X., Liu, G., Zhou, J., Bai, B., … Liu, Y. (2013). Human Umbilical Cord Mesenchymal Stem Cell Therapy for Patients with Active Rheumatoid Arthritis: Safety and Efficacy. Stem Cells and Development, 22(24), 3192-3202. doi:10.1089/scd.2013.0023
Franceschetti, T., & De Bari, C. (2017). The potential role of adult stem cells in the management of the rheumatic diseases. Therapeutic Advances in Musculoskeletal Disease, 9(7), 165-179. doi:10.1177/1759720x17704639
Freitag, J., Bates, D., Boyd, R., Shah, K., Barnard, A., Huguenin, L., & Tenen, A. (2016). Mesenchymal stem cell therapy in the treatment of osteoarthritis: reparative pathways, safety and efficacy – a review. BMC Musculoskeletal Disorders, 17(1). doi:10.1186/s12891-016-1085-9
Vega, A., Martín-Ferrero, M. A., Del Canto, F., Alberca, M., García, V., Munar, A., … García-Sancho, J. (2015). Treatment of Knee Osteoarthritis With Allogeneic Bone Marrow Mesenchymal Stem Cells. Transplantation, 99(8), 1681-1690. doi:10.1097/tp.0000000000000678
Cui, G.-H., Wang, Y. Y., Li, C.-J., Shi, C.-H., & Wang, W.-S. (2016). Efficacy of mesenchymal stem cells in treating patients with osteoarthritis of the knee: A meta-analysis. Experimental and Therapeutic Medicine, 12(5), 3390-3400. doi:10.3892/etm.2016.3791
Iaquinta, M. R., Mazzoni, E., Bononi, I., Rotondo, J. C., Mazziotta, C., Montesi, M., … Martini, F. (2019). Adult Stem Cells for Bone Regeneration and Repair. Frontiers in Cell and Developmental Biology, 7. doi:10.3389/fcell.2019.00268
Marolt Presen, D., Traweger, A., Gimona, M., & Redl, H. (2019). Mesenchymal Stromal Cell-Based Bone Regeneration Therapies: From Cell Transplantation and Tissue Engineering to Therapeutic Secretomes and Extracellular Vesicles. Frontiers in Bioengineering and Biotechnology, 7. doi:10.3389/fbioe.2019.00352
Jo, C. H., Chai, J. W., Jeong, E. C., Oh, S., & Yoon, K. S. (2020). Intratendinous Injection of Mesenchymal Stem Cells for the Treatment of Rotator Cuff Disease: A 2-Year Follow-Up Study. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 36(4), 971-980. doi:10.1016/j.arthro.2019.11.120
Klimczak, A., Kozlowska, U., & Kurpisz, M. (2018). Muscle Stem/Progenitor Cells and Mesenchymal Stem Cells of Bone Marrow Origin for Skeletal Muscle Regeneration in Muscular Dystrophies. Archivum Immunologiae et Therapiae Experimentalis, 66(5), 341-354. doi:10.1007/s00005-018-0509-7
Ferreira, J. R., Teixeira, G. Q., Santos, S. G., Barbosa, M. A., Almeida-Porada, G., & Gonçalves, R. M. (2018). Mesenchymal Stromal Cell Secretome: Influencing Therapeutic Potential by Cellular Pre-conditioning. Frontiers in Immunology, 9. doi:10.3389/fimmu.2018.02837
Aggarwal, S., & Pittenger, M. F. (2005). Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood, 105(4), 1815-1822. doi:10.1182/blood-2004-04-1559
Ren, G., Zhang, L., Zhao, X., Xu, G., Zhang, Y., Roberts, A. I., … Shi, Y. (2008). Mesenchymal Stem Cell-Mediated Immunosuppression Occurs via Concerted Action of Chemokines and Nitric Oxide. Cell Stem Cell, 2(2), 141-150. doi:10.1016/j.stem.2007.11.014
Chabannes, D., Hill, M., Merieau, E., Rossignol, J., Brion, R., Soulillou, J. P., … Cuturi, M. C. (2007). A role for heme oxygenase-1 in the immunosuppressive effect of adult rat and human mesenchymal stem cells. Blood, 110(10), 3691-3694. doi:10.1182/blood-2007-02-075481
Bernardo, M. E., & Fibbe, W. E. (2013). Mesenchymal Stromal Cells: Sensors and Switchers of Inflammation. Cell Stem Cell, 13(4), 392-402. doi:10.1016/j.stem.2013.09.006
Selmani, Z., Naji, A., Zidi, I., Favier, B., Gaiffe, E., Obert, L., … Deschaseaux, F. (2008). Human Leukocyte Antigen-G5 Secretion by Human Mesenchymal Stem Cells Is Required to Suppress T Lymphocyte and Natural Killer Function and to Induce CD4+CD25highFOXP3+Regulatory T Cells. Stem Cells, 26(1), 212-222. doi:10.1634/stemcells.2007-0554
Di Nicola, M., Carlo-Stella, C., Magni, M., Milanesi, M., Longoni, P. D., Matteucci, P., … Gianni, A. M. (2002). Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood, 99(10), 3838-3843. doi:10.1182/blood.v99.10.3838
Gunawardena, T. N. A., Rahman, M. T., Abdullah, B. J. J., & Abu Kasim, N. H. (2019). Conditioned media derived from mesenchymal stem cell cultures: The next generation for regenerative medicine. Journal of Tissue Engineering and Regenerative Medicine, 13(4), 569-586. doi:10.1002/term.2806
Arslan, F., Lai, R. C., Smeets, M. B., Akeroyd, L., Choo, A., Aguor, E. N. E., … de Kleijn, D. P. (2013). Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Research, 10(3), 301-312. doi:10.1016/j.scr.2013.01.002
Tian, T., Wang, Y., Wang, H., Zhu, Z., & Xiao, Z. (2010). Visualizing of the cellular uptake and intracellular trafficking of exosomes by live-cell microscopy. Journal of Cellular Biochemistry, 111(2), 488-496. doi:10.1002/jcb.22733
Feng, D., Zhao, W.-L., Ye, Y.-Y., Bai, X.-C., Liu, R.-Q., Chang, L.-F., … Sui, S.-F. (2010). Cellular Internalization of Exosomes Occurs Through Phagocytosis. Traffic, 11(5), 675-687. doi:10.1111/j.1600-0854.2010.01041.x
Xu, J., Wang, Y., Hsu, C.-Y., Gao, Y., Meyers, C. A., Chang, L., … James, A. W. (2019). Human perivascular stem cell-derived extracellular vesicles mediate bone repair. eLife, 8. doi:10.7554/elife.48191
Morrison, T. J., Jackson, M. V., Cunningham, E. K., Kissenpfennig, A., McAuley, D. F., O’Kane, C. M., & Krasnodembskaya, A. D. (2017). Mesenchymal Stromal Cells Modulate Macrophages in Clinically Relevant Lung Injury Models by Extracellular Vesicle Mitochondrial Transfer. American Journal of Respiratory and Critical Care Medicine, 196(10), 1275-1286. doi:10.1164/rccm.201701-0170oc
Lener, T., Gimona, M., Aigner, L., Börger, V., Buzas, E., Camussi, G., … Portillo, H. A. del. (2015). Applying extracellular vesicles based therapeutics in clinical trials – an ISEV position paper. Journal of Extracellular Vesicles, 4(1), 30087. doi:10.3402/jev.v4.30087
Raposo, G., & Stoorvogel, W. (2013). Extracellular vesicles: Exosomes, microvesicles, and friends. Journal of Cell Biology, 200(4), 373-383. doi:10.1083/jcb.201211138
Qiu, G., Zheng, G., Ge, M., Wang, J., Huang, R., Shu, Q., & Xu, J. (2018). Mesenchymal stem cell-derived extracellular vesicles affect disease outcomes via transfer of microRNAs. Stem Cell Research & Therapy, 9(1). doi:10.1186/s13287-018-1069-9
Van Niel, G., D’Angelo, G., & Raposo, G. (2018). Shedding light on the cell biology of extracellular vesicles. Nature Reviews Molecular Cell Biology, 19(4), 213-228. doi:10.1038/nrm.2017.125
Lai, R. C., Tan, S. S., Yeo, R. W. Y., Choo, A. B. H., Reiner, A. T., Su, Y., … Lim, S. K. (2016). MSC secretes at least 3 EV types each with a unique permutation of membrane lipid, protein and RNA. Journal of Extracellular Vesicles, 5(1), 29828. doi:10.3402/jev.v5.29828
Théry, C., Witwer, K. W., Aikawa, E., Alcaraz, M. J., Anderson, J. D., Andriantsitohaina, R., … Atkin-Smith, G. K. (2018). Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 7(1), 1535750. doi:10.1080/20013078.2018.1535750
Tofiño-Vian, M., Guillén, M. I., & Alcaraz, M. J. (2018). Extracellular vesicles: A new therapeutic strategy for joint conditions. Biochemical Pharmacology, 153, 134-146. doi:10.1016/j.bcp.2018.02.004
Wong, D. E., Banyard, D. A., Santos, P. J. F., Sayadi, L. R., Evans, G. R. D., & Widgerow, A. D. (2019). Adipose-derived stem cell extracellular vesicles: A systematic review✰. Journal of Plastic, Reconstructive & Aesthetic Surgery, 72(7), 1207-1218. doi:10.1016/j.bjps.2019.03.008
Zhou, Y., Xu, H., Xu, W., Wang, B., Wu, H., Tao, Y., … Qian, H. (2013). Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro. Stem Cell Research & Therapy, 4(2), 34. doi:10.1186/scrt194
De Jong, O. G., Van Balkom, B. W. M., Schiffelers, R. M., Bouten, C. V. C., & Verhaar, M. C. (2014). Extracellular Vesicles: Potential Roles in Regenerative Medicine. Frontiers in Immunology, 5. doi:10.3389/fimmu.2014.00608
Robbins, P. D., & Morelli, A. E. (2014). Regulation of immune responses by extracellular vesicles. Nature Reviews Immunology, 14(3), 195-208. doi:10.1038/nri3622
Burrello, J., Monticone, S., Gai, C., Gomez, Y., Kholia, S., & Camussi, G. (2016). Stem Cell-Derived Extracellular Vesicles and Immune-Modulation. Frontiers in Cell and Developmental Biology, 4. doi:10.3389/fcell.2016.00083
Siegel, G., Schäfer, R., & Dazzi, F. (2009). The Immunosuppressive Properties of Mesenchymal Stem Cells. Transplantation, 87(Supplement), S45-S49. doi:10.1097/tp.0b013e3181a285b0
Fierabracci, A., Del Fattore, A., Luciano, R., Muraca, M., Teti, A., & Muraca, M. (2015). Recent Advances in Mesenchymal Stem Cell Immunomodulation: The Role of Microvesicles. Cell Transplantation, 24(2), 133-149. doi:10.3727/096368913x675728
Mokarizadeh, A., Delirezh, N., Morshedi, A., Mosayebi, G., Farshid, A.-A., & Mardani, K. (2012). Microvesicles derived from mesenchymal stem cells: Potent organelles for induction of tolerogenic signaling. Immunology Letters, 147(1-2), 47-54. doi:10.1016/j.imlet.2012.06.001
Conforti, A., Scarsella, M., Starc, N., Giorda, E., Biagini, S., Proia, A., … Bernardo, M. E. (2014). Microvescicles Derived from Mesenchymal Stromal Cells Are Not as Effective as Their Cellular Counterpart in the Ability to Modulate Immune Responses In Vitro. Stem Cells and Development, 23(21), 2591-2599. doi:10.1089/scd.2014.0091
Carreras-Planella, L., Monguió-Tortajada, M., Borràs, F. E., & Franquesa, M. (2019). Immunomodulatory Effect of MSC on B Cells Is Independent of Secreted Extracellular Vesicles. Frontiers in Immunology, 10. doi:10.3389/fimmu.2019.01288
Chen, W., Huang, Y., Han, J., Yu, L., Li, Y., Lu, Z., … Xiao, Y. (2016). Immunomodulatory effects of mesenchymal stromal cells-derived exosome. Immunologic Research, 64(4), 831-840. doi:10.1007/s12026-016-8798-6
Harting, M. T., Srivastava, A. K., Zhaorigetu, S., Bair, H., Prabhakara, K. S., Toledano Furman, N. E., … Olson, S. D. (2017). Inflammation-Stimulated Mesenchymal Stromal Cell-Derived Extracellular Vesicles Attenuate Inflammation. STEM CELLS, 36(1), 79-90. doi:10.1002/stem.2730
Reis, M., Mavin, E., Nicholson, L., Green, K., Dickinson, A. M., & Wang, X. (2018). Mesenchymal Stromal Cell-Derived Extracellular Vesicles Attenuate Dendritic Cell Maturation and Function. Frontiers in Immunology, 9. doi:10.3389/fimmu.2018.02538
Ji, L., Bao, L., Gu, Z., Zhou, Q., Liang, Y., Zheng, Y., … Feng, X. (2019). Comparison of immunomodulatory properties of exosomes derived from bone marrow mesenchymal stem cells and dental pulp stem cells. Immunologic Research, 67(4-5), 432-442. doi:10.1007/s12026-019-09088-6
Blazquez, R., Sanchez-Margallo, F. M., de la Rosa, O., Dalemans, W., Ã lvarez, V., Tarazona, R., & Casado, J. G. (2014). Immunomodulatory Potential of Human Adipose Mesenchymal Stem Cells Derived Exosomes on in vitro Stimulated T Cells. Frontiers in Immunology, 5. doi:10.3389/fimmu.2014.00556
Zhang, B., Yin, Y., Lai, R. C., Tan, S. S., Choo, A. B. H., & Lim, S. K. (2014). Mesenchymal Stem Cells Secrete Immunologically Active Exosomes. Stem Cells and Development, 23(11), 1233-1244. doi:10.1089/scd.2013.0479
Zhang, B., Yeo, R. W. Y., Lai, R. C., Sim, E. W. K., Chin, K. C., & Lim, S. K. (2018). Mesenchymal stromal cell exosome–enhanced regulatory T-cell production through an antigen-presenting cell–mediated pathway. Cytotherapy, 20(5), 687-696. doi:10.1016/j.jcyt.2018.02.372
TOH, W. S., ZHANG, B., LAI, R. C., & LIM, S. K. (2018). Immune regulatory targets of mesenchymal stromal cell exosomes/small extracellular vesicles in tissue regeneration. Cytotherapy, 20(12), 1419-1426. doi:10.1016/j.jcyt.2018.09.008
Budoni, M., Fierabracci, A., Luciano, R., Petrini, S., Di Ciommo, V., & Muraca, M. (2013). The Immunosuppressive Effect of Mesenchymal Stromal Cells on B Lymphocytes is Mediated by Membrane Vesicles. Cell Transplantation, 22(2), 369-379. doi:10.3727/096368911x582769b
Di Trapani, M., Bassi, G., Midolo, M., Gatti, A., Takam Kamga, P., Cassaro, A., … Krampera, M. (2016). Differential and transferable modulatory effects of mesenchymal stromal cell-derived extracellular vesicles on T, B and NK cell functions. Scientific Reports, 6(1). doi:10.1038/srep24120
Henao Agudelo, J. S., Braga, T. T., Amano, M. T., Cenedeze, M. A., Cavinato, R. A., Peixoto-Santos, A. R., … Camara, N. O. S. (2017). Mesenchymal Stromal Cell-Derived Microvesicles Regulate an Internal Pro-Inflammatory Program in Activated Macrophages. Frontiers in Immunology, 8. doi:10.3389/fimmu.2017.00881
Lo Sicco, C., Reverberi, D., Balbi, C., Ulivi, V., Principi, E., Pascucci, L., … Tasso, R. (2017). Mesenchymal Stem Cell-Derived Extracellular Vesicles as Mediators of Anti-Inflammatory Effects: Endorsement of Macrophage Polarization. STEM CELLS Translational Medicine, 6(3), 1018-1028. doi:10.1002/sctm.16-0363
Ti, D., Hao, H., Tong, C., Liu, J., Dong, L., Zheng, J., … Han, W. (2015). LPS-preconditioned mesenchymal stromal cells modify macrophage polarization for resolution of chronic inflammation via exosome-shuttled let-7b. Journal of Translational Medicine, 13(1). doi:10.1186/s12967-015-0642-6
Firestein, G. S. (2003). Evolving concepts of rheumatoid arthritis. Nature, 423(6937), 356-361. doi:10.1038/nature01661
Goronzy, J. J., & Weyand, C. M. (2009). Developments in the scientific understanding of rheumatoid arthritis. Arthritis Research & Therapy, 11(5), 249. doi:10.1186/ar2758
Casado, J. G., Blázquez, R., Vela, F. J., Álvarez, V., Tarazona, R., & Sánchez-Margallo, F. M. (2017). Mesenchymal Stem Cell-Derived Exosomes: Immunomodulatory Evaluation in an Antigen-Induced Synovitis Porcine Model. Frontiers in Veterinary Science, 4. doi:10.3389/fvets.2017.00039
Cosenza, S., Toupet, K., Maumus, M., Luz-Crawford, P., Blanc-Brude, O., Jorgensen, C., & Noël, D. (2018). Mesenchymal stem cells-derived exosomes are more immunosuppressive than microparticles in inflammatory arthritis. Theranostics, 8(5), 1399-1410. doi:10.7150/thno.21072
Yang, Y., Hutchinson, P., & Morand, E. F. (1999). Inhibitory effect of annexin I on synovial inflammation in rat adjuvant arthritis. Arthritis & Rheumatism, 42(7), 1538-1544. doi:10.1002/1529-0131(199907)42:7<1538::aid-anr29>3.0.co;2-3
Headland, S. E., Jones, H. R., Norling, L. V., Kim, A., Souza, P. R., Corsiero, E., … Perretti, M. (2015). Neutrophil-derived microvesicles enter cartilage and protect the joint in inflammatory arthritis. Science Translational Medicine, 7(315), 315ra190-315ra190. doi:10.1126/scitranslmed.aac5608
Tofiño-Vian, M., Guillén, M. I., Pérez del Caz, M. D., Silvestre, A., & Alcaraz, M. J. (2018). Microvesicles from Human Adipose Tissue-Derived Mesenchymal Stem Cells as a New Protective Strategy in Osteoarthritic Chondrocytes. Cellular Physiology and Biochemistry, 47(1), 11-25. doi:10.1159/000489739
Ando, Y., Matsubara, K., Ishikawa, J., Fujio, M., Shohara, R., Hibi, H., … Yamamoto, A. (2014). Stem cell-conditioned medium accelerates distraction osteogenesis through multiple regenerative mechanisms. Bone, 61, 82-90. doi:10.1016/j.bone.2013.12.029
Lu, Z., Chen, Y., Dunstan, C., Roohani-Esfahani, S., & Zreiqat, H. (2017). Priming Adipose Stem Cells with Tumor Necrosis Factor-Alpha Preconditioning Potentiates Their Exosome Efficacy for Bone Regeneration. Tissue Engineering Part A, 23(21-22), 1212-1220. doi:10.1089/ten.tea.2016.0548
Qin, Y., Wang, L., Gao, Z., Chen, G., & Zhang, C. (2016). Bone marrow stromal/stem cell-derived extracellular vesicles regulate osteoblast activity and differentiation in vitro and promote bone regeneration in vivo. Scientific Reports, 6(1). doi:10.1038/srep21961
Wang, X., Omar, O., Vazirisani, F., Thomsen, P., & Ekström, K. (2018). Mesenchymal stem cell-derived exosomes have altered microRNA profiles and induce osteogenic differentiation depending on the stage of differentiation. PLOS ONE, 13(2), e0193059. doi:10.1371/journal.pone.0193059
Shirley, D., Marsh, D., Jordan, G., McQuaid, S., & Li, G. (2005). Systemic recruitment of osteoblastic cells in fracture healing. Journal of Orthopaedic Research, 23(5), 1013-1021. doi:10.1016/j.orthres.2005.01.013
Lee, D. Y., Cho, T.-J., Kim, J. A., Lee, H. R., Yoo, W. J., Chung, C. Y., & Choi, I. H. (2008). Mobilization of endothelial progenitor cells in fracture healing and distraction osteogenesis. Bone, 42(5), 932-941. doi:10.1016/j.bone.2008.01.007
Furuta, T., Miyaki, S., Ishitobi, H., Ogura, T., Kato, Y., Kamei, N., … Ochi, M. (2016). Mesenchymal Stem Cell-Derived Exosomes Promote Fracture Healing in a Mouse Model. STEM CELLS Translational Medicine, 5(12), 1620-1630. doi:10.5966/sctm.2015-0285
Li, W., Liu, Y., Zhang, P., Tang, Y., Zhou, M., Jiang, W., … Zhou, Y. (2018). Tissue-Engineered Bone Immobilized with Human Adipose Stem Cells-Derived Exosomes Promotes Bone Regeneration. ACS Applied Materials & Interfaces, 10(6), 5240-5254. doi:10.1021/acsami.7b17620
Hirschi, K. K., Li, S., & Roy, K. (2014). Induced Pluripotent Stem Cells for Regenerative Medicine. Annual Review of Biomedical Engineering, 16(1), 277-294. doi:10.1146/annurev-bioeng-071813-105108
Sabapathy, V., & Kumar, S. (2016). hi
PSC
‐derived
iMSC
s: NextGen
MSC
s as an advanced therapeutically active cell resource for regenerative medicine. Journal of Cellular and Molecular Medicine, 20(8), 1571-1588. doi:10.1111/jcmm.12839
Zhang, J., Liu, X., Li, H., Chen, C., Hu, B., Niu, X., … Wang, Y. (2016). Exosomes/tricalcium phosphate combination scaffolds can enhance bone regeneration by activating the PI3K/Akt signaling pathway. Stem Cell Research & Therapy, 7(1). doi:10.1186/s13287-016-0391-3
Narayanan, R., Huang, C.-C., & Ravindran, S. (2016). Hijacking the Cellular Mail: Exosome Mediated Differentiation of Mesenchymal Stem Cells. Stem Cells International, 2016, 1-11. doi:10.1155/2016/3808674
Zhu, Y., Jia, Y., Wang, Y., Xu, J., & Chai, Y. (2019). Impaired Bone Regenerative Effect of Exosomes Derived from Bone Marrow Mesenchymal Stem Cells in Type 1 Diabetes. STEM CELLS Translational Medicine, 8(6), 593-605. doi:10.1002/sctm.18-0199
Ferreira, E., & Porter, R. M. (2018). Harnessing extracellular vesicles to direct endochondral repair of large bone defects. Bone & Joint Research, 7(4), 263-273. doi:10.1302/2046-3758.74.bjr-2018-0006
Moya, A., Paquet, J., Deschepper, M., Larochette, N., Oudina, K., Denoeud, C., … Petite, H. (2018). Human Mesenchymal Stem Cell Failure to Adapt to Glucose Shortage and Rapidly Use Intracellular Energy Reserves Through Glycolysis Explains Poor Cell Survival After Implantation. STEM CELLS, 36(3), 363-376. doi:10.1002/stem.2763
Moya, A., Larochette, N., Paquet, J., Deschepper, M., Bensidhoum, M., Izzo, V., … Logeart-Avramoglou, D. (2016). Quiescence Preconditioned Human Multipotent Stromal Cells Adopt a Metabolic Profile Favorable for Enhanced Survival under Ischemia. STEM CELLS, 35(1), 181-196. doi:10.1002/stem.2493
Potier, E., Ferreira, E., Andriamanalijaona, R., Pujol, J.-P., Oudina, K., Logeart-Avramoglou, D., & Petite, H. (2007). Hypoxia affects mesenchymal stromal cell osteogenic differentiation and angiogenic factor expression. Bone, 40(4), 1078-1087. doi:10.1016/j.bone.2006.11.024
Jia, Y., Zhu, Y., Qiu, S., Xu, J., & Chai, Y. (2019). Exosomes secreted by endothelial progenitor cells accelerate bone regeneration during distraction osteogenesis by stimulating angiogenesis. Stem Cell Research & Therapy, 10(1). doi:10.1186/s13287-018-1115-7
Zhang, Y., Hao, Z., Wang, P., Xia, Y., Wu, J., Xia, D., … Xu, S. (2019). Exosomes from human umbilical cord mesenchymal stem cells enhance fracture healing through HIF‐1α‐mediated promotion of angiogenesis in a rat model of stabilized fracture. Cell Proliferation, 52(2), e12570. doi:10.1111/cpr.12570
Qi, X., Zhang, J., Yuan, H., Xu, Z., Li, Q., Niu, X., … Li, X. (2016). Exosomes Secreted by Human-Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells Repair Critical-Sized Bone Defects through Enhanced Angiogenesis and Osteogenesis in Osteoporotic Rats. International Journal of Biological Sciences, 12(7), 836-849. doi:10.7150/ijbs.14809
Chen, C.-Y., Rao, S.-S., Tan, Y.-J., Luo, M.-J., Hu, X.-K., Yin, H., … Xie, H. (2019). Extracellular vesicles from human urine-derived stem cells prevent osteoporosis by transferring CTHRC1 and OPG. Bone Research, 7(1). doi:10.1038/s41413-019-0056-9
Hu, Y., Xu, R., Chen, C.-Y., Rao, S.-S., Xia, K., Huang, J., … Xie, H. (2019). Extracellular vesicles from human umbilical cord blood ameliorate bone loss in senile osteoporotic mice. Metabolism, 95, 93-101. doi:10.1016/j.metabol.2019.01.009
Ren, L., Song, Z., Cai, Q., Chen, R., Zou, Y., Fu, Q., & Ma, Y. (2019). Adipose mesenchymal stem cell-derived exosomes ameliorate hypoxia/serum deprivation-induced osteocyte apoptosis and osteocyte-mediated osteoclastogenesis in vitro. Biochemical and Biophysical Research Communications, 508(1), 138-144. doi:10.1016/j.bbrc.2018.11.109
Guo, S.-C., Tao, S.-C., Yin, W.-J., Qi, X., Sheng, J.-G., & Zhang, C.-Q. (2016). Exosomes from Human Synovial-Derived Mesenchymal Stem Cells Prevent Glucocorticoid-Induced Osteonecrosis of the Femoral Head in the Rat. International Journal of Biological Sciences, 12(10), 1262-1272. doi:10.7150/ijbs.16150
Liu, X., Li, Q., Niu, X., Hu, B., Chen, S., Song, W., … Wang, Y. (2017). Exosomes Secreted from Human-Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells Prevent Osteonecrosis of the Femoral Head by Promoting Angiogenesis. International Journal of Biological Sciences, 13(2), 232-244. doi:10.7150/ijbs.16951
Wang, Y., Wan, C., Deng, L., Liu, X., Cao, X., Gilbert, S. R., … Clemens, T. L. (2007). The hypoxia-inducible factor α pathway couples angiogenesis to osteogenesis during skeletal development. Journal of Clinical Investigation, 117(6), 1616-1626. doi:10.1172/jci31581
Kim, H.-H., Lee, S. E., Chung, W. J., Choi, Y., Kwack, K., Kim, S. W., … Lee, Z. H. (2002). STABILIZATION OF HYPOXIA-INDUCIBLE FACTOR-1α IS INVOLVED IN THE HYPOXIC STIMULI-INDUCED EXPRESSION OF VASCULAR ENDOTHELIAL GROWTH FACTOR IN OSTEOBLASTIC CELLS. Cytokine, 17(1), 14-27. doi:10.1006/cyto.2001.0985
Li, H., Liu, D., Li, C., Zhou, S., Tian, D., Xiao, D., … Huang, J. (2017). Exosomes secreted from mutant-HIF-1α-modified bone-marrow-derived mesenchymal stem cells attenuate early steroid-induced avascular necrosis of femoral head in rabbit. Cell Biology International, 41(12), 1379-1390. doi:10.1002/cbin.10869
Tassi, S. A., Sergio, N. Z., Misawa, M. Y. O., & Villar, C. C. (2017). Efficacy of stem cells on periodontal regeneration: Systematic review of pre-clinical studies. Journal of Periodontal Research, 52(5), 793-812. doi:10.1111/jre.12455
Slots, J. (2017). Periodontitis: facts, fallacies and the future. Periodontology 2000, 75(1), 7-23. doi:10.1111/prd.12221
Kawai, T., Matsuyama, T., Hosokawa, Y., Makihira, S., Seki, M., Karimbux, N. Y., … Taubman, M. A. (2006). B and T Lymphocytes Are the Primary Sources of RANKL in the Bone Resorptive Lesion of Periodontal Disease. The American Journal of Pathology, 169(3), 987-998. doi:10.2353/ajpath.2006.060180
Kawai, T., Katagiri, W., Osugi, M., Sugimura, Y., Hibi, H., & Ueda, M. (2015). Secretomes from bone marrow–derived mesenchymal stromal cells enhance periodontal tissue regeneration. Cytotherapy, 17(4), 369-381. doi:10.1016/j.jcyt.2014.11.009
Katagiri, W., Osugi, M., Kawai, T., & Hibi, H. (2016). First-in-human study and clinical case reports of the alveolar bone regeneration with the secretome from human mesenchymal stem cells. Head & Face Medicine, 12(1). doi:10.1186/s13005-016-0101-5
Chew, J. R. J., Chuah, S. J., Teo, K. Y. W., Zhang, S., Lai, R. C., Fu, J. H., … Toh, W. S. (2019). Mesenchymal stem cell exosomes enhance periodontal ligament cell functions and promote periodontal regeneration. Acta Biomaterialia, 89, 252-264. doi:10.1016/j.actbio.2019.03.021
Pethő, A., Chen, Y., & George, A. (2018). Exosomes in Extracellular Matrix Bone Biology. Current Osteoporosis Reports, 16(1), 58-64. doi:10.1007/s11914-018-0419-y
Liu, M., Sun, Y., & Zhang, Q. (2018). Emerging Role of Extracellular Vesicles in Bone Remodeling. Journal of Dental Research, 97(8), 859-868. doi:10.1177/0022034518764411
Cooke, M. E., Allon, A. A., Cheng, T., Kuo, A. C., Kim, H. T., Vail, T. P., … Alliston, T. (2011). Structured three-dimensional co-culture of mesenchymal stem cells with chondrocytes promotes chondrogenic differentiation without hypertrophy. Osteoarthritis and Cartilage, 19(10), 1210-1218. doi:10.1016/j.joca.2011.07.005
De Windt, T. S., Vonk, L. A., Slaper-Cortenbach, I. C. M., van den Broek, M. P. H., Nizak, R., van Rijen, M. H. P., … Saris, D. B. F. (2016). Allogeneic Mesenchymal Stem Cells Stimulate Cartilage Regeneration and Are Safe for Single-Stage Cartilage Repair in Humans upon Mixture with Recycled Autologous Chondrons. STEM CELLS, 35(1), 256-264. doi:10.1002/stem.2475
Kim, M., Steinberg, D. R., Burdick, J. A., & Mauck, R. L. (2019). Extracellular vesicles mediate improved functional outcomes in engineered cartilage produced from MSC/chondrocyte cocultures. Proceedings of the National Academy of Sciences, 116(5), 1569-1578. doi:10.1073/pnas.1815447116
Swärd, P., Frobell, R., Englund, M., Roos, H., & Struglics, A. (2012). Cartilage and bone markers and inflammatory cytokines are increased in synovial fluid in the acute phase of knee injury (hemarthrosis) – a cross-sectional analysis. Osteoarthritis and Cartilage, 20(11), 1302-1308. doi:10.1016/j.joca.2012.07.021
Swärd, P., Struglics, A., Englund, M., Roos, H. P., & Frobell, R. B. (2014). Soft Tissue Knee Injury With Concomitant Osteochondral Fracture Is Associated With Higher Degree of Acute Joint Inflammation. The American Journal of Sports Medicine, 42(5), 1096-1102. doi:10.1177/0363546514524924
Kapoor, M., Martel-Pelletier, J., Lajeunesse, D., Pelletier, J.-P., & Fahmi, H. (2010). Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nature Reviews Rheumatology, 7(1), 33-42. doi:10.1038/nrrheum.2010.196
Lieberthal, J., Sambamurthy, N., & Scanzello, C. R. (2015). Inflammation in joint injury and post-traumatic osteoarthritis. Osteoarthritis and Cartilage, 23(11), 1825-1834. doi:10.1016/j.joca.2015.08.015
Ragni, E., Perucca Orfei, C., De Luca, P., Lugano, G., Viganò, M., Colombini, A., … de Girolamo, L. (2019). Interaction with hyaluronan matrix and miRNA cargo as contributors for in vitro potential of mesenchymal stem cell-derived extracellular vesicles in a model of human osteoarthritic synoviocytes. Stem Cell Research & Therapy, 10(1). doi:10.1186/s13287-019-1215-z
Vonk, L. A., van Dooremalen, S. F. J., Liv, N., Klumperman, J., Coffer, P. J., Saris, D. B. F., & Lorenowicz, M. J. (2018). Mesenchymal Stromal/stem Cell-derived Extracellular Vesicles Promote Human Cartilage Regeneration In Vitro. Theranostics, 8(4), 906-920. doi:10.7150/thno.20746
Tofiño-Vian, M., Guillén, M. I., Pérez del Caz, M. D., Castejón, M. A., & Alcaraz, M. J. (2017). Extracellular Vesicles from Adipose-Derived Mesenchymal Stem Cells Downregulate Senescence Features in Osteoarthritic Osteoblasts. Oxidative Medicine and Cellular Longevity, 2017, 1-12. doi:10.1155/2017/7197598
Zhang, S., Chuah, S. J., Lai, R. C., Hui, J. H. P., Lim, S. K., & Toh, W. S. (2018). MSC exosomes mediate cartilage repair by enhancing proliferation, attenuating apoptosis and modulating immune reactivity. Biomaterials, 156, 16-27. doi:10.1016/j.biomaterials.2017.11.028
Zhang, S., Chu, W. C., Lai, R. C., Lim, S. K., Hui, J. H. P., & Toh, W. S. (2016). Exosomes derived from human embryonic mesenchymal stem cells promote osteochondral regeneration. Osteoarthritis and Cartilage, 24(12), 2135-2140. doi:10.1016/j.joca.2016.06.022
Liu, X., Yang, Y., Li, Y., Niu, X., Zhao, B., Wang, Y., … Zhu, L. (2017). Integration of stem cell-derived exosomes with in situ hydrogel glue as a promising tissue patch for articular cartilage regeneration. Nanoscale, 9(13), 4430-4438. doi:10.1039/c7nr00352h
Chen, P., Zheng, L., Wang, Y., Tao, M., Xie, Z., Xia, C., … Lin, X. (2019). Desktop-stereolithography 3D printing of a radially oriented extracellular matrix/mesenchymal stem cell exosome bioink for osteochondral defect regeneration. Theranostics, 9(9), 2439-2459. doi:10.7150/thno.31017
Wang, A.-T., Feng, Y., Jia, H.-H., Zhao, M., & Yu, H. (2019). Application of mesenchymal stem cell therapy for the treatment of osteoarthritis of the knee: A concise review. World Journal of Stem Cells, 11(4), 222-235. doi:10.4252/wjsc.v11.i4.222
Torres-Torrillas, M., Rubio, M., Damia, E., Cuervo, B., del Romero, A., Peláez, P., … Sopena, J. J. (2019). Adipose-Derived Mesenchymal Stem Cells: A Promising Tool in the Treatment of Musculoskeletal Diseases. International Journal of Molecular Sciences, 20(12), 3105. doi:10.3390/ijms20123105
Wang, Y., Yu, D., Liu, Z., Zhou, F., Dai, J., Wu, B., … Liu, H. (2017). Exosomes from embryonic mesenchymal stem cells alleviate osteoarthritis through balancing synthesis and degradation of cartilage extracellular matrix. Stem Cell Research & Therapy, 8(1). doi:10.1186/s13287-017-0632-0
Wu, J., Kuang, L., Chen, C., Yang, J., Zeng, W.-N., Li, T., … Yang, L. (2019). miR-100-5p-abundant exosomes derived from infrapatellar fat pad MSCs protect articular cartilage and ameliorate gait abnormalities via inhibition of mTOR in osteoarthritis. Biomaterials, 206, 87-100. doi:10.1016/j.biomaterials.2019.03.022
Zhu, Y., Wang, Y., Zhao, B., Niu, X., Hu, B., Li, Q., … Wang, Y. (2017). Comparison of exosomes secreted by induced pluripotent stem cell-derived mesenchymal stem cells and synovial membrane-derived mesenchymal stem cells for the treatment of osteoarthritis. Stem Cell Research & Therapy, 8(1). doi:10.1186/s13287-017-0510-9
Cui, D., Li, H., Xu, X., Ye, L., Zhou, X., Zheng, L., & Zhou, Y. (2017). Mesenchymal Stem Cells for Cartilage Regeneration of TMJ Osteoarthritis. Stem Cells International, 2017, 1-11. doi:10.1155/2017/5979741
Wang, X. D., Zhang, J. N., Gan, Y. H., & Zhou, Y. H. (2015). Current Understanding of Pathogenesis and Treatment of TMJ Osteoarthritis. Journal of Dental Research, 94(5), 666-673. doi:10.1177/0022034515574770
Chen, K., Man, C., Zhang, B., Hu, J., & Zhu, S.-S. (2013). Effect of in vitro chondrogenic differentiation of autologous mesenchymal stem cells on cartilage and subchondral cancellous bone repair in osteoarthritis of temporomandibular joint. International Journal of Oral and Maxillofacial Surgery, 42(2), 240-248. doi:10.1016/j.ijom.2012.05.030
Zhang, S., Teo, K. Y. W., Chuah, S. J., Lai, R. C., Lim, S. K., & Toh, W. S. (2019). MSC exosomes alleviate temporomandibular joint osteoarthritis by attenuating inflammation and restoring matrix homeostasis. Biomaterials, 200, 35-47. doi:10.1016/j.biomaterials.2019.02.006
Luo, P., Jiang, C., Ji, P., Wang, M., & Xu, J. (2019). Exosomes of stem cells from human exfoliated deciduous teeth as an anti-inflammatory agent in temporomandibular joint chondrocytes via miR-100-5p/mTOR. Stem Cell Research & Therapy, 10(1). doi:10.1186/s13287-019-1341-7
Park, K.-S., Bandeira, E., Shelke, G. V., Lässer, C., & Lötvall, J. (2019). Enhancement of therapeutic potential of mesenchymal stem cell-derived extracellular vesicles. Stem Cell Research & Therapy, 10(1). doi:10.1186/s13287-019-1398-3
Meng, F., Zhang, Z., Chen, W., Huang, G., He, A., Hou, C., … Liao, W. (2016). MicroRNA-320 regulates matrix metalloproteinase-13 expression in chondrogenesis and interleukin-1β-induced chondrocyte responses. Osteoarthritis and Cartilage, 24(5), 932-941. doi:10.1016/j.joca.2015.12.012
Sun, H., Hu, S., Zhang, Z., Lun, J., Liao, W., & Zhang, Z. (2018). Expression of exosomal microRNAs during chondrogenic differentiation of human bone mesenchymal stem cells. Journal of Cellular Biochemistry, 120(1), 171-181. doi:10.1002/jcb.27289
Mao, G., Zhang, Z., Hu, S., Zhang, Z., Chang, Z., Huang, Z., … Kang, Y. (2018). Exosomes derived from miR-92a-3p-overexpressing human mesenchymal stem cells enhance chondrogenesis and suppress cartilage degradation via targeting WNT5A. Stem Cell Research & Therapy, 9(1). doi:10.1186/s13287-018-1004-0
Wang, R., Xu, B., & Xu, H. (2018). TGF-β1 promoted chondrocyte proliferation by regulating Sp1 through MSC-exosomes derived miR-135b. Cell Cycle, 17(24), 2756-2765. doi:10.1080/15384101.2018.1556063
Huang, X., Qiao, F., & Xue, P. (2019). The protective role of microRNA-140-5p in synovial injury of rats with knee osteoarthritis via inactivating the TLR4/Myd88/NF-κB signaling pathway. Cell Cycle, 18(18), 2344-2358. doi:10.1080/15384101.2019.1647025
Tao, S.-C., Yuan, T., Zhang, Y.-L., Yin, W.-J., Guo, S.-C., & Zhang, C.-Q. (2017). Exosomes derived from miR-140-5p-overexpressing human synovial mesenchymal stem cells enhance cartilage tissue regeneration and prevent osteoarthritis of the knee in a rat model. Theranostics, 7(1), 180-195. doi:10.7150/thno.17133
Liu, Y., Zou, R., Wang, Z., Wen, C., Zhang, F., & Lin, F. (2018). Exosomal KLF3-AS1 from hMSCs promoted cartilage repair and chondrocyte proliferation in osteoarthritis. Biochemical Journal, 475(22), 3629-3638. doi:10.1042/bcj20180675
Liu, Y., Lin, L., Zou, R., Wen, C., Wang, Z., & Lin, F. (2018). MSC-derived exosomes promote proliferation and inhibit apoptosis of chondrocytes via lncRNA-KLF3-AS1/miR-206/GIT1 axis in osteoarthritis. Cell Cycle, 17(21-22), 2411-2422. doi:10.1080/15384101.2018.1526603
Risbud, M. V., & Shapiro, I. M. (2013). Role of cytokines in intervertebral disc degeneration: pain and disc content. Nature Reviews Rheumatology, 10(1), 44-56. doi:10.1038/nrrheum.2013.160
Heathfield, S., Le Maitre, C., & Hoyland, J. (2008). Caveolin-1 expression and stress-induced premature senescence in human intervertebral disc degeneration. Arthritis Research & Therapy, 10(4), R87. doi:10.1186/ar2468
Wang, J., Tian, Y., Phillips, K. L. E., Chiverton, N., Haddock, G., Bunning, R. A., … Risbud, M. V. (2013). Tumor necrosis factor α- and interleukin-1β-dependent induction of CCL3 expression by nucleus pulposus cells promotes macrophage migration through CCR1. Arthritis & Rheumatism, 65(3), 832-842. doi:10.1002/art.37819
Han, Y., Li, X., Yan, M., Yang, M., Wang, S., Pan, J., … Tan, J. (2019). Oxidative damage induces apoptosis and promotes calcification in disc cartilage endplate cell through ROS/MAPK/NF-κB pathway: Implications for disc degeneration. Biochemical and Biophysical Research Communications, 516(3), 1026-1032. doi:10.1016/j.bbrc.2017.03.111
Risbud, M. V., Shapiro, I. M., Vaccaro, A. R., & Albert, T. J. (2004). Stem cell regeneration of the nucleus pulposus. The Spine Journal, 4(6), S348-S353. doi:10.1016/j.spinee.2004.07.031
Cheng, X., Zhang, G., Zhang, L., Hu, Y., Zhang, K., Sun, X., … Zhao, J. (2017). Mesenchymal stem cells deliver exogenous miR-21viaexosomes to inhibit nucleus pulposus cell apoptosis and reduce intervertebral disc degeneration. Journal of Cellular and Molecular Medicine, 22(1), 261-276. doi:10.1111/jcmm.13316
Ma, C.-J., Liu, X., Che, L., Liu, Z.-H., Samartzis, D., & Wang, H.-Q. (2015). Stem Cell Therapies for Intervertebral Disc Degeneration: Immune Privilege Reinforcement by Fas/FasL Regulating Machinery. Current Stem Cell Research & Therapy, 10(4), 285-295. doi:10.2174/1574888x10666150416114027
Krock, E., Rosenzweig, D., & Haglund, L. (2015). The Inflammatory Milieu of the Degenerate Disc: Is Mesenchymal Stem Cell-based Therapy for Intervertebral Disc Repair a Feasible Approach? Current Stem Cell Research & Therapy, 10(4), 317-328. doi:10.2174/1574888x10666150211161956
Liao, Z., Luo, R., Li, G., Song, Y., Zhan, S., Zhao, K., … Yang, C. (2019). Exosomes from mesenchymal stem cells modulate endoplasmic reticulum stress to protect against nucleus pulposus cell death and ameliorate intervertebral disc degeneration in vivo. Theranostics, 9(14), 4084-4100. doi:10.7150/thno.33638
Lan, W., Pan, S., Li, H., Sun, C., Chang, X., Lu, K., … Li, C. (2019). Inhibition of the Notch1 Pathway Promotes the Effects of Nucleus Pulposus Cell-Derived Exosomes on the Differentiation of Mesenchymal Stem Cells into Nucleus Pulposus-Like Cells in Rats. Stem Cells International, 2019, 1-12. doi:10.1155/2019/8404168
Lu, K., Li, H., Yang, K., Wu, J., Cai, X., Zhou, Y., & Li, C. (2017). Exosomes as potential alternatives to stem cell therapy for intervertebral disc degeneration: in-vitro study on exosomes in interaction of nucleus pulposus cells and bone marrow mesenchymal stem cells. Stem Cell Research & Therapy, 8(1). doi:10.1186/s13287-017-0563-9
Dezawa, M. (2005). Bone Marrow Stromal Cells Generate Muscle Cells and Repair Muscle Degeneration. Science, 309(5732), 314-317. doi:10.1126/science.1110364
Mellows, B., Mitchell, R., Antonioli, M., Kretz, O., Chambers, D., Zeuner, M.-T., … Patel, K. (2017). Protein and Molecular Characterization of a Clinically Compliant Amniotic Fluid Stem Cell-Derived Extracellular Vesicle Fraction Capable of Accelerating Muscle Regeneration Through Enhancement of Angiogenesis. Stem Cells and Development, 26(18), 1316-1333. doi:10.1089/scd.2017.0089
Mitchell, R., Mellows, B., Sheard, J., Antonioli, M., Kretz, O., Chambers, D., … Patel, K. (2019). Secretome of adipose-derived mesenchymal stem cells promotes skeletal muscle regeneration through synergistic action of extracellular vesicle cargo and soluble proteins. Stem Cell Research & Therapy, 10(1). doi:10.1186/s13287-019-1213-1
Nakamura, Y., Miyaki, S., Ishitobi, H., Matsuyama, S., Nakasa, T., Kamei, N., … Ochi, M. (2015). Mesenchymal-stem-cell-derived exosomes accelerate skeletal muscle regeneration. FEBS Letters, 589(11), 1257-1265. doi:10.1016/j.febslet.2015.03.031
Wang, C., Song, W., Chen, B., Liu, X., & He, Y. (2019). Exosomes Isolated From Adipose-Derived Stem Cells: A New Cell-Free Approach to Prevent the Muscle Degeneration Associated With Torn Rotator Cuffs. The American Journal of Sports Medicine, 47(13), 3247-3255. doi:10.1177/0363546519876323
Shen, H., Yoneda, S., Abu‐Amer, Y., Guilak, F., & Gelberman, R. H. (2019). Stem cell‐derived extracellular vesicles attenuate the early inflammatory response after tendon injury and repair. Journal of Orthopaedic Research, 38(1), 117-127. doi:10.1002/jor.24406
Chamberlain, C. S., Clements, A. E. B., Kink, J. A., Choi, U., Baer, G. S., Halanski, M. A., … Vanderby, R. (2019). Extracellular Vesicle-Educated Macrophages Promote Early Achilles Tendon Healing. STEM CELLS, 37(5), 652-662. doi:10.1002/stem.2988
Le Blanc, K., & Davies, L. C. (2018). MSCs—cells with many sides. Cytotherapy, 20(3), 273-278. doi:10.1016/j.jcyt.2018.01.009
Christy, B. A., Herzig, M. C., Montgomery, R. K., Delavan, C., Bynum, J. A., Reddoch, K. M., & Cap, A. P. (2017). Procoagulant activity of human mesenchymal stem cells. Journal of Trauma and Acute Care Surgery, 83, S164-S169. doi:10.1097/ta.0000000000001485
Toh, W. S., Lai, R. C., Hui, J. H. P., & Lim, S. K. (2017). MSC exosome as a cell-free MSC therapy for cartilage regeneration: Implications for osteoarthritis treatment. Seminars in Cell & Developmental Biology, 67, 56-64. doi:10.1016/j.semcdb.2016.11.008
Witwer, K. W., Van Balkom, B. W. M., Bruno, S., Choo, A., Dominici, M., Gimona, M., … Lim, S. K. (2019). Defining mesenchymal stromal cell (MSC)-derived small extracellular vesicles for therapeutic applications. Journal of Extracellular Vesicles, 8(1), 1609206. doi:10.1080/20013078.2019.1609206
[-]