- -

Extracellular Vesicles from Mesenchymal Stem Cells as Novel Treatments for Musculoskeletal Diseases

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Extracellular Vesicles from Mesenchymal Stem Cells as Novel Treatments for Musculoskeletal Diseases

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author ALCARAZ TORMO, Mª JOSE es_ES
dc.contributor.author Compañ, Álvaro es_ES
dc.contributor.author Guillem Salazar, Mª Isabel es_ES
dc.date.accessioned 2020-02-22T21:01:53Z
dc.date.available 2020-02-22T21:01:53Z
dc.date.issued 2019 es_ES
dc.identifier.issn 2073-4409 es_ES
dc.identifier.uri http://hdl.handle.net/10251/137596
dc.description.abstract [EN] Mesenchymal stem/stromal cells (MSCs) represent a promising therapy for musculoskeletal diseases. There is compelling evidence indicating that MSC effects are mainly mediated by paracrine mechanisms and in particular by the secretion of extracellular vesicles (EVs). Many studies have thus suggested that EVs may be an alternative to cell therapy with MSCs in tissue repair. In this review, we summarize the current understanding of MSC EVs actions in preclinical studies of (1) immune regulation and rheumatoid arthritis, (2) bone repair and bone diseases, (3) cartilage repair and osteoarthritis, (4) intervertebral disk degeneration and (5) skeletal muscle and tendon repair. We also discuss the mechanisms underlying these actions and the perspectives of MSC EVs-based strategies for future treatments of musculoskeletal disorders. es_ES
dc.description.sponsorship This work has been funded by grant SAF2017-85806-R (Ministerio de Ciencia, Innovación y Universidades, Spain, FEDER.
dc.language Inglés es_ES
dc.publisher MDPI es_ES
dc.relation.ispartof Cells es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Mesenchymal stem cells es_ES
dc.subject Extracellular vesicles es_ES
dc.subject Immunoregulation es_ES
dc.subject Bone diseases es_ES
dc.subject Osteoarthritis es_ES
dc.title Extracellular Vesicles from Mesenchymal Stem Cells as Novel Treatments for Musculoskeletal Diseases es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/cells9010098 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/SAF2017-85806-R/ES/MECANISMOS REGULADORES DE LA INFLAMACION Y SU RESOLUCION EN ENFERMEDADES CRONICAS ARTICULARES Y DE LA PIEL/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Alcaraz Tormo, MJ.; Compañ, Á.; Guillem Salazar, MI. (2019). Extracellular Vesicles from Mesenchymal Stem Cells as Novel Treatments for Musculoskeletal Diseases. Cells. 9(1):1-21. https://doi.org/10.3390/cells9010098 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/cells9010098 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 21 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\403139 es_ES
dc.contributor.funder Agencia Estatal de Investigación
dc.description.references Musculoskeletal Conditions https://www.who. int/news-room/fact-sheets/detail/musculoskeletal-conditions es_ES
dc.description.references Hofer, H. R., & Tuan, R. S. (2016). Secreted trophic factors of mesenchymal stem cells support neurovascular and musculoskeletal therapies. Stem Cell Research & Therapy, 7(1). doi:10.1186/s13287-016-0394-0 es_ES
dc.description.references Wang, L., Wang, L., Cong, X., Liu, G., Zhou, J., Bai, B., … Liu, Y. (2013). Human Umbilical Cord Mesenchymal Stem Cell Therapy for Patients with Active Rheumatoid Arthritis: Safety and Efficacy. Stem Cells and Development, 22(24), 3192-3202. doi:10.1089/scd.2013.0023 es_ES
dc.description.references Franceschetti, T., & De Bari, C. (2017). The potential role of adult stem cells in the management of the rheumatic diseases. Therapeutic Advances in Musculoskeletal Disease, 9(7), 165-179. doi:10.1177/1759720x17704639 es_ES
dc.description.references Freitag, J., Bates, D., Boyd, R., Shah, K., Barnard, A., Huguenin, L., & Tenen, A. (2016). Mesenchymal stem cell therapy in the treatment of osteoarthritis: reparative pathways, safety and efficacy – a review. BMC Musculoskeletal Disorders, 17(1). doi:10.1186/s12891-016-1085-9 es_ES
dc.description.references Vega, A., Martín-Ferrero, M. A., Del Canto, F., Alberca, M., García, V., Munar, A., … García-Sancho, J. (2015). Treatment of Knee Osteoarthritis With Allogeneic Bone Marrow Mesenchymal Stem Cells. Transplantation, 99(8), 1681-1690. doi:10.1097/tp.0000000000000678 es_ES
dc.description.references Cui, G.-H., Wang, Y. Y., Li, C.-J., Shi, C.-H., & Wang, W.-S. (2016). Efficacy of mesenchymal stem cells in treating patients with osteoarthritis of the knee: A meta-analysis. Experimental and Therapeutic Medicine, 12(5), 3390-3400. doi:10.3892/etm.2016.3791 es_ES
dc.description.references Iaquinta, M. R., Mazzoni, E., Bononi, I., Rotondo, J. C., Mazziotta, C., Montesi, M., … Martini, F. (2019). Adult Stem Cells for Bone Regeneration and Repair. Frontiers in Cell and Developmental Biology, 7. doi:10.3389/fcell.2019.00268 es_ES
dc.description.references Marolt Presen, D., Traweger, A., Gimona, M., & Redl, H. (2019). Mesenchymal Stromal Cell-Based Bone Regeneration Therapies: From Cell Transplantation and Tissue Engineering to Therapeutic Secretomes and Extracellular Vesicles. Frontiers in Bioengineering and Biotechnology, 7. doi:10.3389/fbioe.2019.00352 es_ES
dc.description.references Jo, C. H., Chai, J. W., Jeong, E. C., Oh, S., & Yoon, K. S. (2020). Intratendinous Injection of Mesenchymal Stem Cells for the Treatment of Rotator Cuff Disease: A 2-Year Follow-Up Study. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 36(4), 971-980. doi:10.1016/j.arthro.2019.11.120 es_ES
dc.description.references Klimczak, A., Kozlowska, U., & Kurpisz, M. (2018). Muscle Stem/Progenitor Cells and Mesenchymal Stem Cells of Bone Marrow Origin for Skeletal Muscle Regeneration in Muscular Dystrophies. Archivum Immunologiae et Therapiae Experimentalis, 66(5), 341-354. doi:10.1007/s00005-018-0509-7 es_ES
dc.description.references Ferreira, J. R., Teixeira, G. Q., Santos, S. G., Barbosa, M. A., Almeida-Porada, G., & Gonçalves, R. M. (2018). Mesenchymal Stromal Cell Secretome: Influencing Therapeutic Potential by Cellular Pre-conditioning. Frontiers in Immunology, 9. doi:10.3389/fimmu.2018.02837 es_ES
dc.description.references Aggarwal, S., & Pittenger, M. F. (2005). Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood, 105(4), 1815-1822. doi:10.1182/blood-2004-04-1559 es_ES
dc.description.references Ren, G., Zhang, L., Zhao, X., Xu, G., Zhang, Y., Roberts, A. I., … Shi, Y. (2008). Mesenchymal Stem Cell-Mediated Immunosuppression Occurs via Concerted Action of Chemokines and Nitric Oxide. Cell Stem Cell, 2(2), 141-150. doi:10.1016/j.stem.2007.11.014 es_ES
dc.description.references Chabannes, D., Hill, M., Merieau, E., Rossignol, J., Brion, R., Soulillou, J. P., … Cuturi, M. C. (2007). A role for heme oxygenase-1 in the immunosuppressive effect of adult rat and human mesenchymal stem cells. Blood, 110(10), 3691-3694. doi:10.1182/blood-2007-02-075481 es_ES
dc.description.references Bernardo, M. E., & Fibbe, W. E. (2013). Mesenchymal Stromal Cells: Sensors and Switchers of Inflammation. Cell Stem Cell, 13(4), 392-402. doi:10.1016/j.stem.2013.09.006 es_ES
dc.description.references Selmani, Z., Naji, A., Zidi, I., Favier, B., Gaiffe, E., Obert, L., … Deschaseaux, F. (2008). Human Leukocyte Antigen-G5 Secretion by Human Mesenchymal Stem Cells Is Required to Suppress T Lymphocyte and Natural Killer Function and to Induce CD4+CD25highFOXP3+Regulatory T Cells. Stem Cells, 26(1), 212-222. doi:10.1634/stemcells.2007-0554 es_ES
dc.description.references Di Nicola, M., Carlo-Stella, C., Magni, M., Milanesi, M., Longoni, P. D., Matteucci, P., … Gianni, A. M. (2002). Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood, 99(10), 3838-3843. doi:10.1182/blood.v99.10.3838 es_ES
dc.description.references Gunawardena, T. N. A., Rahman, M. T., Abdullah, B. J. J., & Abu Kasim, N. H. (2019). Conditioned media derived from mesenchymal stem cell cultures: The next generation for regenerative medicine. Journal of Tissue Engineering and Regenerative Medicine, 13(4), 569-586. doi:10.1002/term.2806 es_ES
dc.description.references Arslan, F., Lai, R. C., Smeets, M. B., Akeroyd, L., Choo, A., Aguor, E. N. E., … de Kleijn, D. P. (2013). Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Research, 10(3), 301-312. doi:10.1016/j.scr.2013.01.002 es_ES
dc.description.references Tian, T., Wang, Y., Wang, H., Zhu, Z., & Xiao, Z. (2010). Visualizing of the cellular uptake and intracellular trafficking of exosomes by live-cell microscopy. Journal of Cellular Biochemistry, 111(2), 488-496. doi:10.1002/jcb.22733 es_ES
dc.description.references Feng, D., Zhao, W.-L., Ye, Y.-Y., Bai, X.-C., Liu, R.-Q., Chang, L.-F., … Sui, S.-F. (2010). Cellular Internalization of Exosomes Occurs Through Phagocytosis. Traffic, 11(5), 675-687. doi:10.1111/j.1600-0854.2010.01041.x es_ES
dc.description.references Xu, J., Wang, Y., Hsu, C.-Y., Gao, Y., Meyers, C. A., Chang, L., … James, A. W. (2019). Human perivascular stem cell-derived extracellular vesicles mediate bone repair. eLife, 8. doi:10.7554/elife.48191 es_ES
dc.description.references Morrison, T. J., Jackson, M. V., Cunningham, E. K., Kissenpfennig, A., McAuley, D. F., O’Kane, C. M., & Krasnodembskaya, A. D. (2017). Mesenchymal Stromal Cells Modulate Macrophages in Clinically Relevant Lung Injury Models by Extracellular Vesicle Mitochondrial Transfer. American Journal of Respiratory and Critical Care Medicine, 196(10), 1275-1286. doi:10.1164/rccm.201701-0170oc es_ES
dc.description.references Lener, T., Gimona, M., Aigner, L., Börger, V., Buzas, E., Camussi, G., … Portillo, H. A. del. (2015). Applying extracellular vesicles based therapeutics in clinical trials – an ISEV position paper. Journal of Extracellular Vesicles, 4(1), 30087. doi:10.3402/jev.v4.30087 es_ES
dc.description.references Raposo, G., & Stoorvogel, W. (2013). Extracellular vesicles: Exosomes, microvesicles, and friends. Journal of Cell Biology, 200(4), 373-383. doi:10.1083/jcb.201211138 es_ES
dc.description.references Qiu, G., Zheng, G., Ge, M., Wang, J., Huang, R., Shu, Q., & Xu, J. (2018). Mesenchymal stem cell-derived extracellular vesicles affect disease outcomes via transfer of microRNAs. Stem Cell Research & Therapy, 9(1). doi:10.1186/s13287-018-1069-9 es_ES
dc.description.references Van Niel, G., D’Angelo, G., & Raposo, G. (2018). Shedding light on the cell biology of extracellular vesicles. Nature Reviews Molecular Cell Biology, 19(4), 213-228. doi:10.1038/nrm.2017.125 es_ES
dc.description.references Lai, R. C., Tan, S. S., Yeo, R. W. Y., Choo, A. B. H., Reiner, A. T., Su, Y., … Lim, S. K. (2016). MSC secretes at least 3 EV types each with a unique permutation of membrane lipid, protein and RNA. Journal of Extracellular Vesicles, 5(1), 29828. doi:10.3402/jev.v5.29828 es_ES
dc.description.references Théry, C., Witwer, K. W., Aikawa, E., Alcaraz, M. J., Anderson, J. D., Andriantsitohaina, R., … Atkin-Smith, G. K. (2018). Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 7(1), 1535750. doi:10.1080/20013078.2018.1535750 es_ES
dc.description.references Tofiño-Vian, M., Guillén, M. I., & Alcaraz, M. J. (2018). Extracellular vesicles: A new therapeutic strategy for joint conditions. Biochemical Pharmacology, 153, 134-146. doi:10.1016/j.bcp.2018.02.004 es_ES
dc.description.references Wong, D. E., Banyard, D. A., Santos, P. J. F., Sayadi, L. R., Evans, G. R. D., & Widgerow, A. D. (2019). Adipose-derived stem cell extracellular vesicles: A systematic review✰. Journal of Plastic, Reconstructive & Aesthetic Surgery, 72(7), 1207-1218. doi:10.1016/j.bjps.2019.03.008 es_ES
dc.description.references Zhou, Y., Xu, H., Xu, W., Wang, B., Wu, H., Tao, Y., … Qian, H. (2013). Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro. Stem Cell Research & Therapy, 4(2), 34. doi:10.1186/scrt194 es_ES
dc.description.references De Jong, O. G., Van Balkom, B. W. M., Schiffelers, R. M., Bouten, C. V. C., & Verhaar, M. C. (2014). Extracellular Vesicles: Potential Roles in Regenerative Medicine. Frontiers in Immunology, 5. doi:10.3389/fimmu.2014.00608 es_ES
dc.description.references Robbins, P. D., & Morelli, A. E. (2014). Regulation of immune responses by extracellular vesicles. Nature Reviews Immunology, 14(3), 195-208. doi:10.1038/nri3622 es_ES
dc.description.references Burrello, J., Monticone, S., Gai, C., Gomez, Y., Kholia, S., & Camussi, G. (2016). Stem Cell-Derived Extracellular Vesicles and Immune-Modulation. Frontiers in Cell and Developmental Biology, 4. doi:10.3389/fcell.2016.00083 es_ES
dc.description.references Siegel, G., Schäfer, R., & Dazzi, F. (2009). The Immunosuppressive Properties of Mesenchymal Stem Cells. Transplantation, 87(Supplement), S45-S49. doi:10.1097/tp.0b013e3181a285b0 es_ES
dc.description.references Fierabracci, A., Del Fattore, A., Luciano, R., Muraca, M., Teti, A., & Muraca, M. (2015). Recent Advances in Mesenchymal Stem Cell Immunomodulation: The Role of Microvesicles. Cell Transplantation, 24(2), 133-149. doi:10.3727/096368913x675728 es_ES
dc.description.references Mokarizadeh, A., Delirezh, N., Morshedi, A., Mosayebi, G., Farshid, A.-A., & Mardani, K. (2012). Microvesicles derived from mesenchymal stem cells: Potent organelles for induction of tolerogenic signaling. Immunology Letters, 147(1-2), 47-54. doi:10.1016/j.imlet.2012.06.001 es_ES
dc.description.references Conforti, A., Scarsella, M., Starc, N., Giorda, E., Biagini, S., Proia, A., … Bernardo, M. E. (2014). Microvescicles Derived from Mesenchymal Stromal Cells Are Not as Effective as Their Cellular Counterpart in the Ability to Modulate Immune Responses In Vitro. Stem Cells and Development, 23(21), 2591-2599. doi:10.1089/scd.2014.0091 es_ES
dc.description.references Carreras-Planella, L., Monguió-Tortajada, M., Borràs, F. E., & Franquesa, M. (2019). Immunomodulatory Effect of MSC on B Cells Is Independent of Secreted Extracellular Vesicles. Frontiers in Immunology, 10. doi:10.3389/fimmu.2019.01288 es_ES
dc.description.references Chen, W., Huang, Y., Han, J., Yu, L., Li, Y., Lu, Z., … Xiao, Y. (2016). Immunomodulatory effects of mesenchymal stromal cells-derived exosome. Immunologic Research, 64(4), 831-840. doi:10.1007/s12026-016-8798-6 es_ES
dc.description.references Harting, M. T., Srivastava, A. K., Zhaorigetu, S., Bair, H., Prabhakara, K. S., Toledano Furman, N. E., … Olson, S. D. (2017). Inflammation-Stimulated Mesenchymal Stromal Cell-Derived Extracellular Vesicles Attenuate Inflammation. STEM CELLS, 36(1), 79-90. doi:10.1002/stem.2730 es_ES
dc.description.references Reis, M., Mavin, E., Nicholson, L., Green, K., Dickinson, A. M., & Wang, X. (2018). Mesenchymal Stromal Cell-Derived Extracellular Vesicles Attenuate Dendritic Cell Maturation and Function. Frontiers in Immunology, 9. doi:10.3389/fimmu.2018.02538 es_ES
dc.description.references Ji, L., Bao, L., Gu, Z., Zhou, Q., Liang, Y., Zheng, Y., … Feng, X. (2019). Comparison of immunomodulatory properties of exosomes derived from bone marrow mesenchymal stem cells and dental pulp stem cells. Immunologic Research, 67(4-5), 432-442. doi:10.1007/s12026-019-09088-6 es_ES
dc.description.references Blazquez, R., Sanchez-Margallo, F. M., de la Rosa, O., Dalemans, W., Ã lvarez, V., Tarazona, R., & Casado, J. G. (2014). Immunomodulatory Potential of Human Adipose Mesenchymal Stem Cells Derived Exosomes on in vitro Stimulated T Cells. Frontiers in Immunology, 5. doi:10.3389/fimmu.2014.00556 es_ES
dc.description.references Zhang, B., Yin, Y., Lai, R. C., Tan, S. S., Choo, A. B. H., & Lim, S. K. (2014). Mesenchymal Stem Cells Secrete Immunologically Active Exosomes. Stem Cells and Development, 23(11), 1233-1244. doi:10.1089/scd.2013.0479 es_ES
dc.description.references Zhang, B., Yeo, R. W. Y., Lai, R. C., Sim, E. W. K., Chin, K. C., & Lim, S. K. (2018). Mesenchymal stromal cell exosome–enhanced regulatory T-cell production through an antigen-presenting cell–mediated pathway. Cytotherapy, 20(5), 687-696. doi:10.1016/j.jcyt.2018.02.372 es_ES
dc.description.references TOH, W. S., ZHANG, B., LAI, R. C., & LIM, S. K. (2018). Immune regulatory targets of mesenchymal stromal cell exosomes/small extracellular vesicles in tissue regeneration. Cytotherapy, 20(12), 1419-1426. doi:10.1016/j.jcyt.2018.09.008 es_ES
dc.description.references Budoni, M., Fierabracci, A., Luciano, R., Petrini, S., Di Ciommo, V., & Muraca, M. (2013). The Immunosuppressive Effect of Mesenchymal Stromal Cells on B Lymphocytes is Mediated by Membrane Vesicles. Cell Transplantation, 22(2), 369-379. doi:10.3727/096368911x582769b es_ES
dc.description.references Di Trapani, M., Bassi, G., Midolo, M., Gatti, A., Takam Kamga, P., Cassaro, A., … Krampera, M. (2016). Differential and transferable modulatory effects of mesenchymal stromal cell-derived extracellular vesicles on T, B and NK cell functions. Scientific Reports, 6(1). doi:10.1038/srep24120 es_ES
dc.description.references Henao Agudelo, J. S., Braga, T. T., Amano, M. T., Cenedeze, M. A., Cavinato, R. A., Peixoto-Santos, A. R., … Camara, N. O. S. (2017). Mesenchymal Stromal Cell-Derived Microvesicles Regulate an Internal Pro-Inflammatory Program in Activated Macrophages. Frontiers in Immunology, 8. doi:10.3389/fimmu.2017.00881 es_ES
dc.description.references Lo Sicco, C., Reverberi, D., Balbi, C., Ulivi, V., Principi, E., Pascucci, L., … Tasso, R. (2017). Mesenchymal Stem Cell-Derived Extracellular Vesicles as Mediators of Anti-Inflammatory Effects: Endorsement of Macrophage Polarization. STEM CELLS Translational Medicine, 6(3), 1018-1028. doi:10.1002/sctm.16-0363 es_ES
dc.description.references Ti, D., Hao, H., Tong, C., Liu, J., Dong, L., Zheng, J., … Han, W. (2015). LPS-preconditioned mesenchymal stromal cells modify macrophage polarization for resolution of chronic inflammation via exosome-shuttled let-7b. Journal of Translational Medicine, 13(1). doi:10.1186/s12967-015-0642-6 es_ES
dc.description.references Firestein, G. S. (2003). Evolving concepts of rheumatoid arthritis. Nature, 423(6937), 356-361. doi:10.1038/nature01661 es_ES
dc.description.references Goronzy, J. J., & Weyand, C. M. (2009). Developments in the scientific understanding of rheumatoid arthritis. Arthritis Research & Therapy, 11(5), 249. doi:10.1186/ar2758 es_ES
dc.description.references Casado, J. G., Blázquez, R., Vela, F. J., Álvarez, V., Tarazona, R., & Sánchez-Margallo, F. M. (2017). Mesenchymal Stem Cell-Derived Exosomes: Immunomodulatory Evaluation in an Antigen-Induced Synovitis Porcine Model. Frontiers in Veterinary Science, 4. doi:10.3389/fvets.2017.00039 es_ES
dc.description.references Cosenza, S., Toupet, K., Maumus, M., Luz-Crawford, P., Blanc-Brude, O., Jorgensen, C., & Noël, D. (2018). Mesenchymal stem cells-derived exosomes are more immunosuppressive than microparticles in inflammatory arthritis. Theranostics, 8(5), 1399-1410. doi:10.7150/thno.21072 es_ES
dc.description.references Yang, Y., Hutchinson, P., & Morand, E. F. (1999). Inhibitory effect of annexin I on synovial inflammation in rat adjuvant arthritis. Arthritis & Rheumatism, 42(7), 1538-1544. doi:10.1002/1529-0131(199907)42:7<1538::aid-anr29>3.0.co;2-3 es_ES
dc.description.references Headland, S. E., Jones, H. R., Norling, L. V., Kim, A., Souza, P. R., Corsiero, E., … Perretti, M. (2015). Neutrophil-derived microvesicles enter cartilage and protect the joint in inflammatory arthritis. Science Translational Medicine, 7(315), 315ra190-315ra190. doi:10.1126/scitranslmed.aac5608 es_ES
dc.description.references Tofiño-Vian, M., Guillén, M. I., Pérez del Caz, M. D., Silvestre, A., & Alcaraz, M. J. (2018). Microvesicles from Human Adipose Tissue-Derived Mesenchymal Stem Cells as a New Protective Strategy in Osteoarthritic Chondrocytes. Cellular Physiology and Biochemistry, 47(1), 11-25. doi:10.1159/000489739 es_ES
dc.description.references Ando, Y., Matsubara, K., Ishikawa, J., Fujio, M., Shohara, R., Hibi, H., … Yamamoto, A. (2014). Stem cell-conditioned medium accelerates distraction osteogenesis through multiple regenerative mechanisms. Bone, 61, 82-90. doi:10.1016/j.bone.2013.12.029 es_ES
dc.description.references Lu, Z., Chen, Y., Dunstan, C., Roohani-Esfahani, S., & Zreiqat, H. (2017). Priming Adipose Stem Cells with Tumor Necrosis Factor-Alpha Preconditioning Potentiates Their Exosome Efficacy for Bone Regeneration. Tissue Engineering Part A, 23(21-22), 1212-1220. doi:10.1089/ten.tea.2016.0548 es_ES
dc.description.references Qin, Y., Wang, L., Gao, Z., Chen, G., & Zhang, C. (2016). Bone marrow stromal/stem cell-derived extracellular vesicles regulate osteoblast activity and differentiation in vitro and promote bone regeneration in vivo. Scientific Reports, 6(1). doi:10.1038/srep21961 es_ES
dc.description.references Wang, X., Omar, O., Vazirisani, F., Thomsen, P., & Ekström, K. (2018). Mesenchymal stem cell-derived exosomes have altered microRNA profiles and induce osteogenic differentiation depending on the stage of differentiation. PLOS ONE, 13(2), e0193059. doi:10.1371/journal.pone.0193059 es_ES
dc.description.references Shirley, D., Marsh, D., Jordan, G., McQuaid, S., & Li, G. (2005). Systemic recruitment of osteoblastic cells in fracture healing. Journal of Orthopaedic Research, 23(5), 1013-1021. doi:10.1016/j.orthres.2005.01.013 es_ES
dc.description.references Lee, D. Y., Cho, T.-J., Kim, J. A., Lee, H. R., Yoo, W. J., Chung, C. Y., & Choi, I. H. (2008). Mobilization of endothelial progenitor cells in fracture healing and distraction osteogenesis. Bone, 42(5), 932-941. doi:10.1016/j.bone.2008.01.007 es_ES
dc.description.references Furuta, T., Miyaki, S., Ishitobi, H., Ogura, T., Kato, Y., Kamei, N., … Ochi, M. (2016). Mesenchymal Stem Cell-Derived Exosomes Promote Fracture Healing in a Mouse Model. STEM CELLS Translational Medicine, 5(12), 1620-1630. doi:10.5966/sctm.2015-0285 es_ES
dc.description.references Li, W., Liu, Y., Zhang, P., Tang, Y., Zhou, M., Jiang, W., … Zhou, Y. (2018). Tissue-Engineered Bone Immobilized with Human Adipose Stem Cells-Derived Exosomes Promotes Bone Regeneration. ACS Applied Materials & Interfaces, 10(6), 5240-5254. doi:10.1021/acsami.7b17620 es_ES
dc.description.references Hirschi, K. K., Li, S., & Roy, K. (2014). Induced Pluripotent Stem Cells for Regenerative Medicine. Annual Review of Biomedical Engineering, 16(1), 277-294. doi:10.1146/annurev-bioeng-071813-105108 es_ES
dc.description.references Sabapathy, V., & Kumar, S. (2016). hi PSC ‐derived iMSC s: NextGen MSC s as an advanced therapeutically active cell resource for regenerative medicine. Journal of Cellular and Molecular Medicine, 20(8), 1571-1588. doi:10.1111/jcmm.12839 es_ES
dc.description.references Zhang, J., Liu, X., Li, H., Chen, C., Hu, B., Niu, X., … Wang, Y. (2016). Exosomes/tricalcium phosphate combination scaffolds can enhance bone regeneration by activating the PI3K/Akt signaling pathway. Stem Cell Research & Therapy, 7(1). doi:10.1186/s13287-016-0391-3 es_ES
dc.description.references Narayanan, R., Huang, C.-C., & Ravindran, S. (2016). Hijacking the Cellular Mail: Exosome Mediated Differentiation of Mesenchymal Stem Cells. Stem Cells International, 2016, 1-11. doi:10.1155/2016/3808674 es_ES
dc.description.references Zhu, Y., Jia, Y., Wang, Y., Xu, J., & Chai, Y. (2019). Impaired Bone Regenerative Effect of Exosomes Derived from Bone Marrow Mesenchymal Stem Cells in Type 1 Diabetes. STEM CELLS Translational Medicine, 8(6), 593-605. doi:10.1002/sctm.18-0199 es_ES
dc.description.references Ferreira, E., & Porter, R. M. (2018). Harnessing extracellular vesicles to direct endochondral repair of large bone defects. Bone & Joint Research, 7(4), 263-273. doi:10.1302/2046-3758.74.bjr-2018-0006 es_ES
dc.description.references Moya, A., Paquet, J., Deschepper, M., Larochette, N., Oudina, K., Denoeud, C., … Petite, H. (2018). Human Mesenchymal Stem Cell Failure to Adapt to Glucose Shortage and Rapidly Use Intracellular Energy Reserves Through Glycolysis Explains Poor Cell Survival After Implantation. STEM CELLS, 36(3), 363-376. doi:10.1002/stem.2763 es_ES
dc.description.references Moya, A., Larochette, N., Paquet, J., Deschepper, M., Bensidhoum, M., Izzo, V., … Logeart-Avramoglou, D. (2016). Quiescence Preconditioned Human Multipotent Stromal Cells Adopt a Metabolic Profile Favorable for Enhanced Survival under Ischemia. STEM CELLS, 35(1), 181-196. doi:10.1002/stem.2493 es_ES
dc.description.references Potier, E., Ferreira, E., Andriamanalijaona, R., Pujol, J.-P., Oudina, K., Logeart-Avramoglou, D., & Petite, H. (2007). Hypoxia affects mesenchymal stromal cell osteogenic differentiation and angiogenic factor expression. Bone, 40(4), 1078-1087. doi:10.1016/j.bone.2006.11.024 es_ES
dc.description.references Jia, Y., Zhu, Y., Qiu, S., Xu, J., & Chai, Y. (2019). Exosomes secreted by endothelial progenitor cells accelerate bone regeneration during distraction osteogenesis by stimulating angiogenesis. Stem Cell Research & Therapy, 10(1). doi:10.1186/s13287-018-1115-7 es_ES
dc.description.references Zhang, Y., Hao, Z., Wang, P., Xia, Y., Wu, J., Xia, D., … Xu, S. (2019). Exosomes from human umbilical cord mesenchymal stem cells enhance fracture healing through HIF‐1α‐mediated promotion of angiogenesis in a rat model of stabilized fracture. Cell Proliferation, 52(2), e12570. doi:10.1111/cpr.12570 es_ES
dc.description.references Qi, X., Zhang, J., Yuan, H., Xu, Z., Li, Q., Niu, X., … Li, X. (2016). Exosomes Secreted by Human-Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells Repair Critical-Sized Bone Defects through Enhanced Angiogenesis and Osteogenesis in Osteoporotic Rats. International Journal of Biological Sciences, 12(7), 836-849. doi:10.7150/ijbs.14809 es_ES
dc.description.references Chen, C.-Y., Rao, S.-S., Tan, Y.-J., Luo, M.-J., Hu, X.-K., Yin, H., … Xie, H. (2019). Extracellular vesicles from human urine-derived stem cells prevent osteoporosis by transferring CTHRC1 and OPG. Bone Research, 7(1). doi:10.1038/s41413-019-0056-9 es_ES
dc.description.references Hu, Y., Xu, R., Chen, C.-Y., Rao, S.-S., Xia, K., Huang, J., … Xie, H. (2019). Extracellular vesicles from human umbilical cord blood ameliorate bone loss in senile osteoporotic mice. Metabolism, 95, 93-101. doi:10.1016/j.metabol.2019.01.009 es_ES
dc.description.references Ren, L., Song, Z., Cai, Q., Chen, R., Zou, Y., Fu, Q., & Ma, Y. (2019). Adipose mesenchymal stem cell-derived exosomes ameliorate hypoxia/serum deprivation-induced osteocyte apoptosis and osteocyte-mediated osteoclastogenesis in vitro. Biochemical and Biophysical Research Communications, 508(1), 138-144. doi:10.1016/j.bbrc.2018.11.109 es_ES
dc.description.references Guo, S.-C., Tao, S.-C., Yin, W.-J., Qi, X., Sheng, J.-G., & Zhang, C.-Q. (2016). Exosomes from Human Synovial-Derived Mesenchymal Stem Cells Prevent Glucocorticoid-Induced Osteonecrosis of the Femoral Head in the Rat. International Journal of Biological Sciences, 12(10), 1262-1272. doi:10.7150/ijbs.16150 es_ES
dc.description.references Liu, X., Li, Q., Niu, X., Hu, B., Chen, S., Song, W., … Wang, Y. (2017). Exosomes Secreted from Human-Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells Prevent Osteonecrosis of the Femoral Head by Promoting Angiogenesis. International Journal of Biological Sciences, 13(2), 232-244. doi:10.7150/ijbs.16951 es_ES
dc.description.references Wang, Y., Wan, C., Deng, L., Liu, X., Cao, X., Gilbert, S. R., … Clemens, T. L. (2007). The hypoxia-inducible factor α pathway couples angiogenesis to osteogenesis during skeletal development. Journal of Clinical Investigation, 117(6), 1616-1626. doi:10.1172/jci31581 es_ES
dc.description.references Kim, H.-H., Lee, S. E., Chung, W. J., Choi, Y., Kwack, K., Kim, S. W., … Lee, Z. H. (2002). STABILIZATION OF HYPOXIA-INDUCIBLE FACTOR-1α IS INVOLVED IN THE HYPOXIC STIMULI-INDUCED EXPRESSION OF VASCULAR ENDOTHELIAL GROWTH FACTOR IN OSTEOBLASTIC CELLS. Cytokine, 17(1), 14-27. doi:10.1006/cyto.2001.0985 es_ES
dc.description.references Li, H., Liu, D., Li, C., Zhou, S., Tian, D., Xiao, D., … Huang, J. (2017). Exosomes secreted from mutant-HIF-1α-modified bone-marrow-derived mesenchymal stem cells attenuate early steroid-induced avascular necrosis of femoral head in rabbit. Cell Biology International, 41(12), 1379-1390. doi:10.1002/cbin.10869 es_ES
dc.description.references Tassi, S. A., Sergio, N. Z., Misawa, M. Y. O., & Villar, C. C. (2017). Efficacy of stem cells on periodontal regeneration: Systematic review of pre-clinical studies. Journal of Periodontal Research, 52(5), 793-812. doi:10.1111/jre.12455 es_ES
dc.description.references Slots, J. (2017). Periodontitis: facts, fallacies and the future. Periodontology 2000, 75(1), 7-23. doi:10.1111/prd.12221 es_ES
dc.description.references Kawai, T., Matsuyama, T., Hosokawa, Y., Makihira, S., Seki, M., Karimbux, N. Y., … Taubman, M. A. (2006). B and T Lymphocytes Are the Primary Sources of RANKL in the Bone Resorptive Lesion of Periodontal Disease. The American Journal of Pathology, 169(3), 987-998. doi:10.2353/ajpath.2006.060180 es_ES
dc.description.references Kawai, T., Katagiri, W., Osugi, M., Sugimura, Y., Hibi, H., & Ueda, M. (2015). Secretomes from bone marrow–derived mesenchymal stromal cells enhance periodontal tissue regeneration. Cytotherapy, 17(4), 369-381. doi:10.1016/j.jcyt.2014.11.009 es_ES
dc.description.references Katagiri, W., Osugi, M., Kawai, T., & Hibi, H. (2016). First-in-human study and clinical case reports of the alveolar bone regeneration with the secretome from human mesenchymal stem cells. Head & Face Medicine, 12(1). doi:10.1186/s13005-016-0101-5 es_ES
dc.description.references Chew, J. R. J., Chuah, S. J., Teo, K. Y. W., Zhang, S., Lai, R. C., Fu, J. H., … Toh, W. S. (2019). Mesenchymal stem cell exosomes enhance periodontal ligament cell functions and promote periodontal regeneration. Acta Biomaterialia, 89, 252-264. doi:10.1016/j.actbio.2019.03.021 es_ES
dc.description.references Pethő, A., Chen, Y., & George, A. (2018). Exosomes in Extracellular Matrix Bone Biology. Current Osteoporosis Reports, 16(1), 58-64. doi:10.1007/s11914-018-0419-y es_ES
dc.description.references Liu, M., Sun, Y., & Zhang, Q. (2018). Emerging Role of Extracellular Vesicles in Bone Remodeling. Journal of Dental Research, 97(8), 859-868. doi:10.1177/0022034518764411 es_ES
dc.description.references Cooke, M. E., Allon, A. A., Cheng, T., Kuo, A. C., Kim, H. T., Vail, T. P., … Alliston, T. (2011). Structured three-dimensional co-culture of mesenchymal stem cells with chondrocytes promotes chondrogenic differentiation without hypertrophy. Osteoarthritis and Cartilage, 19(10), 1210-1218. doi:10.1016/j.joca.2011.07.005 es_ES
dc.description.references De Windt, T. S., Vonk, L. A., Slaper-Cortenbach, I. C. M., van den Broek, M. P. H., Nizak, R., van Rijen, M. H. P., … Saris, D. B. F. (2016). Allogeneic Mesenchymal Stem Cells Stimulate Cartilage Regeneration and Are Safe for Single-Stage Cartilage Repair in Humans upon Mixture with Recycled Autologous Chondrons. STEM CELLS, 35(1), 256-264. doi:10.1002/stem.2475 es_ES
dc.description.references Kim, M., Steinberg, D. R., Burdick, J. A., & Mauck, R. L. (2019). Extracellular vesicles mediate improved functional outcomes in engineered cartilage produced from MSC/chondrocyte cocultures. Proceedings of the National Academy of Sciences, 116(5), 1569-1578. doi:10.1073/pnas.1815447116 es_ES
dc.description.references Swärd, P., Frobell, R., Englund, M., Roos, H., & Struglics, A. (2012). Cartilage and bone markers and inflammatory cytokines are increased in synovial fluid in the acute phase of knee injury (hemarthrosis) – a cross-sectional analysis. Osteoarthritis and Cartilage, 20(11), 1302-1308. doi:10.1016/j.joca.2012.07.021 es_ES
dc.description.references Swärd, P., Struglics, A., Englund, M., Roos, H. P., & Frobell, R. B. (2014). Soft Tissue Knee Injury With Concomitant Osteochondral Fracture Is Associated With Higher Degree of Acute Joint Inflammation. The American Journal of Sports Medicine, 42(5), 1096-1102. doi:10.1177/0363546514524924 es_ES
dc.description.references Kapoor, M., Martel-Pelletier, J., Lajeunesse, D., Pelletier, J.-P., & Fahmi, H. (2010). Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nature Reviews Rheumatology, 7(1), 33-42. doi:10.1038/nrrheum.2010.196 es_ES
dc.description.references Lieberthal, J., Sambamurthy, N., & Scanzello, C. R. (2015). Inflammation in joint injury and post-traumatic osteoarthritis. Osteoarthritis and Cartilage, 23(11), 1825-1834. doi:10.1016/j.joca.2015.08.015 es_ES
dc.description.references Ragni, E., Perucca Orfei, C., De Luca, P., Lugano, G., Viganò, M., Colombini, A., … de Girolamo, L. (2019). Interaction with hyaluronan matrix and miRNA cargo as contributors for in vitro potential of mesenchymal stem cell-derived extracellular vesicles in a model of human osteoarthritic synoviocytes. Stem Cell Research & Therapy, 10(1). doi:10.1186/s13287-019-1215-z es_ES
dc.description.references Vonk, L. A., van Dooremalen, S. F. J., Liv, N., Klumperman, J., Coffer, P. J., Saris, D. B. F., & Lorenowicz, M. J. (2018). Mesenchymal Stromal/stem Cell-derived Extracellular Vesicles Promote Human Cartilage Regeneration In Vitro. Theranostics, 8(4), 906-920. doi:10.7150/thno.20746 es_ES
dc.description.references Tofiño-Vian, M., Guillén, M. I., Pérez del Caz, M. D., Castejón, M. A., & Alcaraz, M. J. (2017). Extracellular Vesicles from Adipose-Derived Mesenchymal Stem Cells Downregulate Senescence Features in Osteoarthritic Osteoblasts. Oxidative Medicine and Cellular Longevity, 2017, 1-12. doi:10.1155/2017/7197598 es_ES
dc.description.references Zhang, S., Chuah, S. J., Lai, R. C., Hui, J. H. P., Lim, S. K., & Toh, W. S. (2018). MSC exosomes mediate cartilage repair by enhancing proliferation, attenuating apoptosis and modulating immune reactivity. Biomaterials, 156, 16-27. doi:10.1016/j.biomaterials.2017.11.028 es_ES
dc.description.references Zhang, S., Chu, W. C., Lai, R. C., Lim, S. K., Hui, J. H. P., & Toh, W. S. (2016). Exosomes derived from human embryonic mesenchymal stem cells promote osteochondral regeneration. Osteoarthritis and Cartilage, 24(12), 2135-2140. doi:10.1016/j.joca.2016.06.022 es_ES
dc.description.references Liu, X., Yang, Y., Li, Y., Niu, X., Zhao, B., Wang, Y., … Zhu, L. (2017). Integration of stem cell-derived exosomes with in situ hydrogel glue as a promising tissue patch for articular cartilage regeneration. Nanoscale, 9(13), 4430-4438. doi:10.1039/c7nr00352h es_ES
dc.description.references Chen, P., Zheng, L., Wang, Y., Tao, M., Xie, Z., Xia, C., … Lin, X. (2019). Desktop-stereolithography 3D printing of a radially oriented extracellular matrix/mesenchymal stem cell exosome bioink for osteochondral defect regeneration. Theranostics, 9(9), 2439-2459. doi:10.7150/thno.31017 es_ES
dc.description.references Wang, A.-T., Feng, Y., Jia, H.-H., Zhao, M., & Yu, H. (2019). Application of mesenchymal stem cell therapy for the treatment of osteoarthritis of the knee: A concise review. World Journal of Stem Cells, 11(4), 222-235. doi:10.4252/wjsc.v11.i4.222 es_ES
dc.description.references Torres-Torrillas, M., Rubio, M., Damia, E., Cuervo, B., del Romero, A., Peláez, P., … Sopena, J. J. (2019). Adipose-Derived Mesenchymal Stem Cells: A Promising Tool in the Treatment of Musculoskeletal Diseases. International Journal of Molecular Sciences, 20(12), 3105. doi:10.3390/ijms20123105 es_ES
dc.description.references Wang, Y., Yu, D., Liu, Z., Zhou, F., Dai, J., Wu, B., … Liu, H. (2017). Exosomes from embryonic mesenchymal stem cells alleviate osteoarthritis through balancing synthesis and degradation of cartilage extracellular matrix. Stem Cell Research & Therapy, 8(1). doi:10.1186/s13287-017-0632-0 es_ES
dc.description.references Wu, J., Kuang, L., Chen, C., Yang, J., Zeng, W.-N., Li, T., … Yang, L. (2019). miR-100-5p-abundant exosomes derived from infrapatellar fat pad MSCs protect articular cartilage and ameliorate gait abnormalities via inhibition of mTOR in osteoarthritis. Biomaterials, 206, 87-100. doi:10.1016/j.biomaterials.2019.03.022 es_ES
dc.description.references Zhu, Y., Wang, Y., Zhao, B., Niu, X., Hu, B., Li, Q., … Wang, Y. (2017). Comparison of exosomes secreted by induced pluripotent stem cell-derived mesenchymal stem cells and synovial membrane-derived mesenchymal stem cells for the treatment of osteoarthritis. Stem Cell Research & Therapy, 8(1). doi:10.1186/s13287-017-0510-9 es_ES
dc.description.references Cui, D., Li, H., Xu, X., Ye, L., Zhou, X., Zheng, L., & Zhou, Y. (2017). Mesenchymal Stem Cells for Cartilage Regeneration of TMJ Osteoarthritis. Stem Cells International, 2017, 1-11. doi:10.1155/2017/5979741 es_ES
dc.description.references Wang, X. D., Zhang, J. N., Gan, Y. H., & Zhou, Y. H. (2015). Current Understanding of Pathogenesis and Treatment of TMJ Osteoarthritis. Journal of Dental Research, 94(5), 666-673. doi:10.1177/0022034515574770 es_ES
dc.description.references Chen, K., Man, C., Zhang, B., Hu, J., & Zhu, S.-S. (2013). Effect of in vitro chondrogenic differentiation of autologous mesenchymal stem cells on cartilage and subchondral cancellous bone repair in osteoarthritis of temporomandibular joint. International Journal of Oral and Maxillofacial Surgery, 42(2), 240-248. doi:10.1016/j.ijom.2012.05.030 es_ES
dc.description.references Zhang, S., Teo, K. Y. W., Chuah, S. J., Lai, R. C., Lim, S. K., & Toh, W. S. (2019). MSC exosomes alleviate temporomandibular joint osteoarthritis by attenuating inflammation and restoring matrix homeostasis. Biomaterials, 200, 35-47. doi:10.1016/j.biomaterials.2019.02.006 es_ES
dc.description.references Luo, P., Jiang, C., Ji, P., Wang, M., & Xu, J. (2019). Exosomes of stem cells from human exfoliated deciduous teeth as an anti-inflammatory agent in temporomandibular joint chondrocytes via miR-100-5p/mTOR. Stem Cell Research & Therapy, 10(1). doi:10.1186/s13287-019-1341-7 es_ES
dc.description.references Park, K.-S., Bandeira, E., Shelke, G. V., Lässer, C., & Lötvall, J. (2019). Enhancement of therapeutic potential of mesenchymal stem cell-derived extracellular vesicles. Stem Cell Research & Therapy, 10(1). doi:10.1186/s13287-019-1398-3 es_ES
dc.description.references Meng, F., Zhang, Z., Chen, W., Huang, G., He, A., Hou, C., … Liao, W. (2016). MicroRNA-320 regulates matrix metalloproteinase-13 expression in chondrogenesis and interleukin-1β-induced chondrocyte responses. Osteoarthritis and Cartilage, 24(5), 932-941. doi:10.1016/j.joca.2015.12.012 es_ES
dc.description.references Sun, H., Hu, S., Zhang, Z., Lun, J., Liao, W., & Zhang, Z. (2018). Expression of exosomal microRNAs during chondrogenic differentiation of human bone mesenchymal stem cells. Journal of Cellular Biochemistry, 120(1), 171-181. doi:10.1002/jcb.27289 es_ES
dc.description.references Mao, G., Zhang, Z., Hu, S., Zhang, Z., Chang, Z., Huang, Z., … Kang, Y. (2018). Exosomes derived from miR-92a-3p-overexpressing human mesenchymal stem cells enhance chondrogenesis and suppress cartilage degradation via targeting WNT5A. Stem Cell Research & Therapy, 9(1). doi:10.1186/s13287-018-1004-0 es_ES
dc.description.references Wang, R., Xu, B., & Xu, H. (2018). TGF-β1 promoted chondrocyte proliferation by regulating Sp1 through MSC-exosomes derived miR-135b. Cell Cycle, 17(24), 2756-2765. doi:10.1080/15384101.2018.1556063 es_ES
dc.description.references Huang, X., Qiao, F., & Xue, P. (2019). The protective role of microRNA-140-5p in synovial injury of rats with knee osteoarthritis via inactivating the TLR4/Myd88/NF-κB signaling pathway. Cell Cycle, 18(18), 2344-2358. doi:10.1080/15384101.2019.1647025 es_ES
dc.description.references Tao, S.-C., Yuan, T., Zhang, Y.-L., Yin, W.-J., Guo, S.-C., & Zhang, C.-Q. (2017). Exosomes derived from miR-140-5p-overexpressing human synovial mesenchymal stem cells enhance cartilage tissue regeneration and prevent osteoarthritis of the knee in a rat model. Theranostics, 7(1), 180-195. doi:10.7150/thno.17133 es_ES
dc.description.references Liu, Y., Zou, R., Wang, Z., Wen, C., Zhang, F., & Lin, F. (2018). Exosomal KLF3-AS1 from hMSCs promoted cartilage repair and chondrocyte proliferation in osteoarthritis. Biochemical Journal, 475(22), 3629-3638. doi:10.1042/bcj20180675 es_ES
dc.description.references Liu, Y., Lin, L., Zou, R., Wen, C., Wang, Z., & Lin, F. (2018). MSC-derived exosomes promote proliferation and inhibit apoptosis of chondrocytes via lncRNA-KLF3-AS1/miR-206/GIT1 axis in osteoarthritis. Cell Cycle, 17(21-22), 2411-2422. doi:10.1080/15384101.2018.1526603 es_ES
dc.description.references Risbud, M. V., & Shapiro, I. M. (2013). Role of cytokines in intervertebral disc degeneration: pain and disc content. Nature Reviews Rheumatology, 10(1), 44-56. doi:10.1038/nrrheum.2013.160 es_ES
dc.description.references Heathfield, S., Le Maitre, C., & Hoyland, J. (2008). Caveolin-1 expression and stress-induced premature senescence in human intervertebral disc degeneration. Arthritis Research & Therapy, 10(4), R87. doi:10.1186/ar2468 es_ES
dc.description.references Wang, J., Tian, Y., Phillips, K. L. E., Chiverton, N., Haddock, G., Bunning, R. A., … Risbud, M. V. (2013). Tumor necrosis factor α- and interleukin-1β-dependent induction of CCL3 expression by nucleus pulposus cells promotes macrophage migration through CCR1. Arthritis & Rheumatism, 65(3), 832-842. doi:10.1002/art.37819 es_ES
dc.description.references Han, Y., Li, X., Yan, M., Yang, M., Wang, S., Pan, J., … Tan, J. (2019). Oxidative damage induces apoptosis and promotes calcification in disc cartilage endplate cell through ROS/MAPK/NF-κB pathway: Implications for disc degeneration. Biochemical and Biophysical Research Communications, 516(3), 1026-1032. doi:10.1016/j.bbrc.2017.03.111 es_ES
dc.description.references Risbud, M. V., Shapiro, I. M., Vaccaro, A. R., & Albert, T. J. (2004). Stem cell regeneration of the nucleus pulposus. The Spine Journal, 4(6), S348-S353. doi:10.1016/j.spinee.2004.07.031 es_ES
dc.description.references Cheng, X., Zhang, G., Zhang, L., Hu, Y., Zhang, K., Sun, X., … Zhao, J. (2017). Mesenchymal stem cells deliver exogenous miR-21viaexosomes to inhibit nucleus pulposus cell apoptosis and reduce intervertebral disc degeneration. Journal of Cellular and Molecular Medicine, 22(1), 261-276. doi:10.1111/jcmm.13316 es_ES
dc.description.references Ma, C.-J., Liu, X., Che, L., Liu, Z.-H., Samartzis, D., & Wang, H.-Q. (2015). Stem Cell Therapies for Intervertebral Disc Degeneration: Immune Privilege Reinforcement by Fas/FasL Regulating Machinery. Current Stem Cell Research & Therapy, 10(4), 285-295. doi:10.2174/1574888x10666150416114027 es_ES
dc.description.references Krock, E., Rosenzweig, D., & Haglund, L. (2015). The Inflammatory Milieu of the Degenerate Disc: Is Mesenchymal Stem Cell-based Therapy for Intervertebral Disc Repair a Feasible Approach? Current Stem Cell Research & Therapy, 10(4), 317-328. doi:10.2174/1574888x10666150211161956 es_ES
dc.description.references Liao, Z., Luo, R., Li, G., Song, Y., Zhan, S., Zhao, K., … Yang, C. (2019). Exosomes from mesenchymal stem cells modulate endoplasmic reticulum stress to protect against nucleus pulposus cell death and ameliorate intervertebral disc degeneration in vivo. Theranostics, 9(14), 4084-4100. doi:10.7150/thno.33638 es_ES
dc.description.references Lan, W., Pan, S., Li, H., Sun, C., Chang, X., Lu, K., … Li, C. (2019). Inhibition of the Notch1 Pathway Promotes the Effects of Nucleus Pulposus Cell-Derived Exosomes on the Differentiation of Mesenchymal Stem Cells into Nucleus Pulposus-Like Cells in Rats. Stem Cells International, 2019, 1-12. doi:10.1155/2019/8404168 es_ES
dc.description.references Lu, K., Li, H., Yang, K., Wu, J., Cai, X., Zhou, Y., & Li, C. (2017). Exosomes as potential alternatives to stem cell therapy for intervertebral disc degeneration: in-vitro study on exosomes in interaction of nucleus pulposus cells and bone marrow mesenchymal stem cells. Stem Cell Research & Therapy, 8(1). doi:10.1186/s13287-017-0563-9 es_ES
dc.description.references Dezawa, M. (2005). Bone Marrow Stromal Cells Generate Muscle Cells and Repair Muscle Degeneration. Science, 309(5732), 314-317. doi:10.1126/science.1110364 es_ES
dc.description.references Mellows, B., Mitchell, R., Antonioli, M., Kretz, O., Chambers, D., Zeuner, M.-T., … Patel, K. (2017). Protein and Molecular Characterization of a Clinically Compliant Amniotic Fluid Stem Cell-Derived Extracellular Vesicle Fraction Capable of Accelerating Muscle Regeneration Through Enhancement of Angiogenesis. Stem Cells and Development, 26(18), 1316-1333. doi:10.1089/scd.2017.0089 es_ES
dc.description.references Mitchell, R., Mellows, B., Sheard, J., Antonioli, M., Kretz, O., Chambers, D., … Patel, K. (2019). Secretome of adipose-derived mesenchymal stem cells promotes skeletal muscle regeneration through synergistic action of extracellular vesicle cargo and soluble proteins. Stem Cell Research & Therapy, 10(1). doi:10.1186/s13287-019-1213-1 es_ES
dc.description.references Nakamura, Y., Miyaki, S., Ishitobi, H., Matsuyama, S., Nakasa, T., Kamei, N., … Ochi, M. (2015). Mesenchymal-stem-cell-derived exosomes accelerate skeletal muscle regeneration. FEBS Letters, 589(11), 1257-1265. doi:10.1016/j.febslet.2015.03.031 es_ES
dc.description.references Wang, C., Song, W., Chen, B., Liu, X., & He, Y. (2019). Exosomes Isolated From Adipose-Derived Stem Cells: A New Cell-Free Approach to Prevent the Muscle Degeneration Associated With Torn Rotator Cuffs. The American Journal of Sports Medicine, 47(13), 3247-3255. doi:10.1177/0363546519876323 es_ES
dc.description.references Shen, H., Yoneda, S., Abu‐Amer, Y., Guilak, F., & Gelberman, R. H. (2019). Stem cell‐derived extracellular vesicles attenuate the early inflammatory response after tendon injury and repair. Journal of Orthopaedic Research, 38(1), 117-127. doi:10.1002/jor.24406 es_ES
dc.description.references Chamberlain, C. S., Clements, A. E. B., Kink, J. A., Choi, U., Baer, G. S., Halanski, M. A., … Vanderby, R. (2019). Extracellular Vesicle-Educated Macrophages Promote Early Achilles Tendon Healing. STEM CELLS, 37(5), 652-662. doi:10.1002/stem.2988 es_ES
dc.description.references Le Blanc, K., & Davies, L. C. (2018). MSCs—cells with many sides. Cytotherapy, 20(3), 273-278. doi:10.1016/j.jcyt.2018.01.009 es_ES
dc.description.references Christy, B. A., Herzig, M. C., Montgomery, R. K., Delavan, C., Bynum, J. A., Reddoch, K. M., & Cap, A. P. (2017). Procoagulant activity of human mesenchymal stem cells. Journal of Trauma and Acute Care Surgery, 83, S164-S169. doi:10.1097/ta.0000000000001485 es_ES
dc.description.references Toh, W. S., Lai, R. C., Hui, J. H. P., & Lim, S. K. (2017). MSC exosome as a cell-free MSC therapy for cartilage regeneration: Implications for osteoarthritis treatment. Seminars in Cell & Developmental Biology, 67, 56-64. doi:10.1016/j.semcdb.2016.11.008 es_ES
dc.description.references Witwer, K. W., Van Balkom, B. W. M., Bruno, S., Choo, A., Dominici, M., Gimona, M., … Lim, S. K. (2019). Defining mesenchymal stromal cell (MSC)-derived small extracellular vesicles for therapeutic applications. Journal of Extracellular Vesicles, 8(1), 1609206. doi:10.1080/20013078.2019.1609206 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem