Zabihi, H., Vogeler, I., Amin, Z. M., & Gourabi, B. R. (2016). Mapping the sensitivity of citrus crops to freeze stress using a geographical information system in Ramsar, Iran. Weather and Climate Extremes, 14, 17-23. doi:10.1016/j.wace.2016.10.002
Tan, E. S., Slaughter, D. C., & Thompson, J. F. (2005). Freeze damage detection in oranges using gas sensors. Postharvest Biology and Technology, 35(2), 177-182. doi:10.1016/j.postharvbio.2004.07.008
Slaughter, D. C., Obenland, D. M., Thompson, J. F., Arpaia, M. L., & Margosan, D. A. (2008). Non-destructive freeze damage detection in oranges using machine vision and ultraviolet fluorescence. Postharvest Biology and Technology, 48(3), 341-346. doi:10.1016/j.postharvbio.2007.09.012
[+]
Zabihi, H., Vogeler, I., Amin, Z. M., & Gourabi, B. R. (2016). Mapping the sensitivity of citrus crops to freeze stress using a geographical information system in Ramsar, Iran. Weather and Climate Extremes, 14, 17-23. doi:10.1016/j.wace.2016.10.002
Tan, E. S., Slaughter, D. C., & Thompson, J. F. (2005). Freeze damage detection in oranges using gas sensors. Postharvest Biology and Technology, 35(2), 177-182. doi:10.1016/j.postharvbio.2004.07.008
Slaughter, D. C., Obenland, D. M., Thompson, J. F., Arpaia, M. L., & Margosan, D. A. (2008). Non-destructive freeze damage detection in oranges using machine vision and ultraviolet fluorescence. Postharvest Biology and Technology, 48(3), 341-346. doi:10.1016/j.postharvbio.2007.09.012
Sala, J. M., Sanchez-Ballesta, M. T., Alférez, F., Mulas, M., Zacarias, L., & Lafuente, M. T. (2005). A comparative study of the postharvest performance of an ABA-deficient mutant of oranges. Postharvest Biology and Technology, 37(3), 232-240. doi:10.1016/j.postharvbio.2005.05.006
Siboza, X. I., Bertling, I., & Odindo, A. O. (2014). Salicylic acid and methyl jasmonate improve chilling tolerance in cold-stored lemon fruit (Citrus limon). Journal of Plant Physiology, 171(18), 1722-1731. doi:10.1016/j.jplph.2014.05.012
Jha, P. K., Xanthakis, E., Chevallier, S., Jury, V., & Le-Bail, A. (2019). Assessment of freeze damage in fruits and vegetables. Food Research International, 121, 479-496. doi:10.1016/j.foodres.2018.12.002
Sala, J. M., & Lafuente, M. T. (1999). Catalase in the Heat-Induced Chilling Tolerance of Cold-Stored Hybrid Fortune Mandarin Fruits. Journal of Agricultural and Food Chemistry, 47(6), 2410-2414. doi:10.1021/jf980805e
Moomkesh, S., Mireei, S. A., Sadeghi, M., & Nazeri, M. (2017). Early detection of freezing damage in sweet lemons using Vis/SWNIR spectroscopy. Biosystems Engineering, 164, 157-170. doi:10.1016/j.biosystemseng.2017.10.009
Obenland, D. M., Aung, L. H., Bridges, D. L., & Mackey, B. E. (2003). Volatile Emissions of Navel Oranges as Predictors of Freeze Damage. Journal of Agricultural and Food Chemistry, 51(11), 3367-3371. doi:10.1021/jf021109o
Gambhir, P. N., Choi, Y. J., Slaughter, D. C., Thompson, J. F., & McCarthy, M. J. (2005). Proton spin-spin relaxation time of peel and flesh of navel orange varieties exposed to freezing temperature. Journal of the Science of Food and Agriculture, 85(14), 2482-2486. doi:10.1002/jsfa.2266
Fuentes, A., Masot, R., Fernández-Segovia, I., Ruiz-Rico, M., Alcañiz, M., & Barat, J. M. (2013). Differentiation between fresh and frozen-thawed sea bream (Sparus aurata) using impedance spectroscopy techniques. Innovative Food Science & Emerging Technologies, 19, 210-217. doi:10.1016/j.ifset.2013.05.001
Conesa, C., García-Breijo, E., Loeff, E., Seguí, L., Fito, P., & Laguarda-Miró, N. (2015). An Electrochemical Impedance Spectroscopy-Based Technique to Identify and Quantify Fermentable Sugars in Pineapple Waste Valorization for Bioethanol Production. Sensors, 15(9), 22941-22955. doi:10.3390/s150922941
Wu, L., Ogawa, Y., & Tagawa, A. (2008). Electrical impedance spectroscopy analysis of eggplant pulp and effects of drying and freezing–thawing treatments on its impedance characteristics. Journal of Food Engineering, 87(2), 274-280. doi:10.1016/j.jfoodeng.2007.12.003
Serrano-Pallicer, E., Muñoz-Albero, M., Pérez-Fuster, C., Masot Peris, R., & Laguarda-Miró, N. (2018). Early Detection of Freeze Damage in Navelate Oranges with Electrochemical Impedance Spectroscopy. Sensors, 18(12), 4503. doi:10.3390/s18124503
Grossi, M., & Riccò, B. (2017). Electrical impedance spectroscopy (EIS) for biological analysis and food characterization: a review. Journal of Sensors and Sensor Systems, 6(2), 303-325. doi:10.5194/jsss-6-303-2017
Chowdhury, A., Kanti Bera, T., Ghoshal, D., & Chakraborty, B. (2016). Electrical Impedance Variations in Banana Ripening: An Analytical Study with Electrical Impedance Spectroscopy. Journal of Food Process Engineering, 40(2), e12387. doi:10.1111/jfpe.12387
Bauchot, A. D., Harker, F. R., & Arnold, W. M. (2000). The use of electrical impedance spectroscopy to assess the physiological condition of kiwifruit. Postharvest Biology and Technology, 18(1), 9-18. doi:10.1016/s0925-5214(99)00056-3
Figueiredo Neto, A., Cárdenas Olivier, N., Rabelo Cordeiro, E., & Pequeno de Oliveira, H. (2017). Determination of mango ripening degree by electrical impedance spectroscopy. Computers and Electronics in Agriculture, 143, 222-226. doi:10.1016/j.compag.2017.10.018
Benavente, J., Ramos-Barrado, J. ., & Heredia, A. (1998). A study of the electrical behaviour of isolated tomato cuticular membranes and cutin by impedance spectroscopy measurements. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 140(1-3), 333-338. doi:10.1016/s0927-7757(97)00290-2
Ando, Y., Maeda, Y., Mizutani, K., Wakatsuki, N., Hagiwara, S., & Nabetani, H. (2016). Impact of blanching and freeze-thaw pretreatment on drying rate of carrot roots in relation to changes in cell membrane function and cell wall structure. LWT - Food Science and Technology, 71, 40-46. doi:10.1016/j.lwt.2016.03.019
Ando, Y., Maeda, Y., Mizutani, K., Wakatsuki, N., Hagiwara, S., & Nabetani, H. (2016). Effect of air-dehydration pretreatment before freezing on the electrical impedance characteristics and texture of carrots. Journal of Food Engineering, 169, 114-121. doi:10.1016/j.jfoodeng.2015.08.026
Fuentes, A., Vázquez-Gutiérrez, J. L., Pérez-Gago, M. B., Vonasek, E., Nitin, N., & Barrett, D. M. (2014). Application of nondestructive impedance spectroscopy to determination of the effect of temperature on potato microstructure and texture. Journal of Food Engineering, 133, 16-22. doi:10.1016/j.jfoodeng.2014.02.016
M’hiri, N., Veys-Renaux, D., Rocca, E., Ioannou, I., Boudhrioua, N. M., & Ghoul, M. (2016). Corrosion inhibition of carbon steel in acidic medium by orange peel extract and its main antioxidant compounds. Corrosion Science, 102, 55-62. doi:10.1016/j.corsci.2015.09.017
Conesa, C., Ibáñez Civera, J., Seguí, L., Fito, P., & Laguarda-Miró, N. (2016). An Electrochemical Impedance Spectroscopy System for Monitoring Pineapple Waste Saccharification. Sensors, 16(2), 188. doi:10.3390/s16020188
Conesa, C., Sánchez, L. G., Seguí, L., Fito, P., & Laguarda-Miró, N. (2017). Ethanol quantification in pineapple waste by an electrochemical impedance spectroscopy-based system and artificial neural networks. Chemometrics and Intelligent Laboratory Systems, 161, 1-7. doi:10.1016/j.chemolab.2016.12.005
Ulrich, C., Petersson, H., Sundgren, H., Björefors, F., & Krantz-Rülcker, C. (2007). Simultaneous estimation of soot and diesel contamination in engine oil using electrochemical impedance spectroscopy. Sensors and Actuators B: Chemical, 127(2), 613-618. doi:10.1016/j.snb.2007.05.014
Olivati, C. A., Riul, A., Balogh, D. T., Oliveira, O. N., & Ferreira, M. (2008). Detection of phenolic compounds using impedance spectroscopy measurements. Bioprocess and Biosystems Engineering, 32(1), 41-46. doi:10.1007/s00449-008-0218-4
Martínez Gil, P., Laguarda-Miro, N., Camino, J. S., & Peris, R. M. (2013). Glyphosate detection with ammonium nitrate and humic acids as potential interfering substances by pulsed voltammetry technique. Talanta, 115, 702-705. doi:10.1016/j.talanta.2013.06.030
Górski, Ł., Sordoń, W., Ciepiela, F., Kubiak, W. W., & Jakubowska, M. (2016). Voltammetric classification of ciders with PLS-DA. Talanta, 146, 231-236. doi:10.1016/j.talanta.2015.08.027
Kumar, G., & Buchheit, R. G. (2008). Use of Artificial Neural Network Models to Predict Coated Component Life from Short-Term Electrochemical Impedance Spectroscopy Measurements. CORROSION, 64(3), 241-254. doi:10.5006/1.3278469
Eddahech, A., Briat, O., Bertrand, N., Delétage, J.-Y., & Vinassa, J.-M. (2012). Behavior and state-of-health monitoring of Li-ion batteries using impedance spectroscopy and recurrent neural networks. International Journal of Electrical Power & Energy Systems, 42(1), 487-494. doi:10.1016/j.ijepes.2012.04.050
Conesa, C., Seguí, L., Laguarda-Miró, N., & Fito, P. (2016). Microwaves as a pretreatment for enhancing enzymatic hydrolysis of pineapple industrial waste for bioethanol production. Food and Bioproducts Processing, 100, 203-213. doi:10.1016/j.fbp.2016.07.001
Masot, R., Alcañiz, M., Fuentes, A., Schmidt, F. C., Barat, J. M., Gil, L., … Soto, J. (2010). Design of a low-cost non-destructive system for punctual measurements of salt levels in food products using impedance spectroscopy. Sensors and Actuators A: Physical, 158(2), 217-223. doi:10.1016/j.sna.2010.01.010
Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-regression: a basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58(2), 109-130. doi:10.1016/s0169-7439(01)00155-1
Legin, Zadorozhnaya, Khaydukova, Kirsanov, Rybakin, Zagrebin, … Legin. (2019). Rapid Evaluation of Integral Quality and Safety of Surface and Waste Waters by a Multisensor System (Electronic Tongue). Sensors, 19(9), 2019. doi:10.3390/s19092019
Garcia-Breijo, E., Atkinson, J., Gil-Sanchez, L., Masot, R., Ibañez, J., Garrigues, J., … Olguin, C. (2011). A comparison study of pattern recognition algorithms implemented on a microcontroller for use in an electronic tongue for monitoring drinking waters. Sensors and Actuators A: Physical, 172(2), 570-582. doi:10.1016/j.sna.2011.09.039
Garcia-Breijo, E., Garrigues, J., Sanchez, L., & Laguarda-Miro, N. (2013). An Embedded Simplified Fuzzy ARTMAP Implemented on a Microcontroller for Food Classification. Sensors, 13(8), 10418-10429. doi:10.3390/s130810418
Brezmes, J., Cabre, P., Rojo, S., Llobet, E., Vilanova, X., & Correig, X. (2005). Discrimination between different samples of olive oil using variable selection techniques and modified fuzzy artmap neural networks. IEEE Sensors Journal, 5(3), 463-470. doi:10.1109/jsen.2005.846186
Ibáñez Civera, J., Garcia Breijo, E., Laguarda Miró, N., Gil Sánchez, L., Garrigues Baixauli, J., Romero Gil, I., … Alcañiz Fillol, M. (2011). Artificial neural network onto eight bit microcontroller for Secchi depth calculation. Sensors and Actuators B: Chemical, 156(1), 132-139. doi:10.1016/j.snb.2011.04.001
Fricke, H., & Morse, S. (1925). THE ELECTRIC RESISTANCE AND CAPACITY OF BLOOD FOR FREQUENCIES BETWEEN 800 AND 4½ MILLION CYCLES. Journal of General Physiology, 9(2), 153-167. doi:10.1085/jgp.9.2.153
Damez, J.-L., Clerjon, S., Abouelkaram, S., & Lepetit, J. (2007). Dielectric behavior of beef meat in the 1–1500kHz range: Simulation with the Fricke/Cole–Cole model. Meat Science, 77(4), 512-519. doi:10.1016/j.meatsci.2007.04.028
Zhang, L., Shen, H., & Luo, Y. (2010). Study on the electric conduction properties of fresh and frozen-thawed grass carp (Ctenopharyngodon idellus) and tilapia(Oreochromis niloticus). International Journal of Food Science & Technology, 45(12), 2560-2564. doi:10.1111/j.1365-2621.2010.02428.x
[-]