- -

Freeze-Damage Detection in Lemons Using Electrochemical Impedance Spectroscopy

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Freeze-Damage Detection in Lemons Using Electrochemical Impedance Spectroscopy

Mostrar el registro completo del ítem

Ochandio Fernández, A.; Olguín Pinatti, CA.; Masot Peris, R.; Laguarda-Miro, N. (2019). Freeze-Damage Detection in Lemons Using Electrochemical Impedance Spectroscopy. Sensors. 19(18):1-12. https://doi.org/10.3390/s19184051

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/137955

Ficheros en el ítem

Metadatos del ítem

Título: Freeze-Damage Detection in Lemons Using Electrochemical Impedance Spectroscopy
Autor: Ochandio Fernández, A. Olguín Pinatti, Cristian Ariel Masot Peris, Rafael Laguarda-Miro, Nicolas
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear
Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors
Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Fecha difusión:
Resumen:
[EN] Lemon is the most sensitive citrus fruit to cold. Therefore, it is of capital importance to detect and avoid temperatures that could damage the fruit both when it is still in the tree and in its subsequent commercialization. ...[+]
Palabras clave: Electrochemical impedance spectroscopy , Lemon , Freeze damage , Detection
Derechos de uso: Reconocimiento (by)
Fuente:
Sensors. (eissn: 1424-8220 )
DOI: 10.3390/s19184051
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/s19184051
Código del Proyecto:
info:eu-repo/grantAgreement/GVA//GV%2F2018%2F090/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-100910-B-C43/ES/DESARROLLO DE PLATAFORMAS DE DETECCION Y TERAPEUTICAS PARA APLICACIONES BIOMEDICAS BASADAS EN DISPOSITIVOS ELECTRONICOS/
Agradecimientos:
This research was funded by the the Spanish Government/FEDER funds (RTI2018-100910-B-C43) (MINECO/FEDER) and the Conselleria d'Educacio, Investigacio, Cultura i Esport de la Generalitat Valenciana (GV/2018/090).
Tipo: Artículo

References

Zabihi, H., Vogeler, I., Amin, Z. M., & Gourabi, B. R. (2016). Mapping the sensitivity of citrus crops to freeze stress using a geographical information system in Ramsar, Iran. Weather and Climate Extremes, 14, 17-23. doi:10.1016/j.wace.2016.10.002

Tan, E. S., Slaughter, D. C., & Thompson, J. F. (2005). Freeze damage detection in oranges using gas sensors. Postharvest Biology and Technology, 35(2), 177-182. doi:10.1016/j.postharvbio.2004.07.008

Slaughter, D. C., Obenland, D. M., Thompson, J. F., Arpaia, M. L., & Margosan, D. A. (2008). Non-destructive freeze damage detection in oranges using machine vision and ultraviolet fluorescence. Postharvest Biology and Technology, 48(3), 341-346. doi:10.1016/j.postharvbio.2007.09.012 [+]
Zabihi, H., Vogeler, I., Amin, Z. M., & Gourabi, B. R. (2016). Mapping the sensitivity of citrus crops to freeze stress using a geographical information system in Ramsar, Iran. Weather and Climate Extremes, 14, 17-23. doi:10.1016/j.wace.2016.10.002

Tan, E. S., Slaughter, D. C., & Thompson, J. F. (2005). Freeze damage detection in oranges using gas sensors. Postharvest Biology and Technology, 35(2), 177-182. doi:10.1016/j.postharvbio.2004.07.008

Slaughter, D. C., Obenland, D. M., Thompson, J. F., Arpaia, M. L., & Margosan, D. A. (2008). Non-destructive freeze damage detection in oranges using machine vision and ultraviolet fluorescence. Postharvest Biology and Technology, 48(3), 341-346. doi:10.1016/j.postharvbio.2007.09.012

Sala, J. M., Sanchez-Ballesta, M. T., Alférez, F., Mulas, M., Zacarias, L., & Lafuente, M. T. (2005). A comparative study of the postharvest performance of an ABA-deficient mutant of oranges. Postharvest Biology and Technology, 37(3), 232-240. doi:10.1016/j.postharvbio.2005.05.006

Siboza, X. I., Bertling, I., & Odindo, A. O. (2014). Salicylic acid and methyl jasmonate improve chilling tolerance in cold-stored lemon fruit (Citrus limon). Journal of Plant Physiology, 171(18), 1722-1731. doi:10.1016/j.jplph.2014.05.012

Jha, P. K., Xanthakis, E., Chevallier, S., Jury, V., & Le-Bail, A. (2019). Assessment of freeze damage in fruits and vegetables. Food Research International, 121, 479-496. doi:10.1016/j.foodres.2018.12.002

Sala, J. M., & Lafuente, M. T. (1999). Catalase in the Heat-Induced Chilling Tolerance of Cold-Stored Hybrid Fortune Mandarin Fruits. Journal of Agricultural and Food Chemistry, 47(6), 2410-2414. doi:10.1021/jf980805e

Moomkesh, S., Mireei, S. A., Sadeghi, M., & Nazeri, M. (2017). Early detection of freezing damage in sweet lemons using Vis/SWNIR spectroscopy. Biosystems Engineering, 164, 157-170. doi:10.1016/j.biosystemseng.2017.10.009

Obenland, D. M., Aung, L. H., Bridges, D. L., & Mackey, B. E. (2003). Volatile Emissions of Navel Oranges as Predictors of Freeze Damage. Journal of Agricultural and Food Chemistry, 51(11), 3367-3371. doi:10.1021/jf021109o

Gambhir, P. N., Choi, Y. J., Slaughter, D. C., Thompson, J. F., & McCarthy, M. J. (2005). Proton spin-spin relaxation time of peel and flesh of navel orange varieties exposed to freezing temperature. Journal of the Science of Food and Agriculture, 85(14), 2482-2486. doi:10.1002/jsfa.2266

Fuentes, A., Masot, R., Fernández-Segovia, I., Ruiz-Rico, M., Alcañiz, M., & Barat, J. M. (2013). Differentiation between fresh and frozen-thawed sea bream (Sparus aurata) using impedance spectroscopy techniques. Innovative Food Science & Emerging Technologies, 19, 210-217. doi:10.1016/j.ifset.2013.05.001

Conesa, C., García-Breijo, E., Loeff, E., Seguí, L., Fito, P., & Laguarda-Miró, N. (2015). An Electrochemical Impedance Spectroscopy-Based Technique to Identify and Quantify Fermentable Sugars in Pineapple Waste Valorization for Bioethanol Production. Sensors, 15(9), 22941-22955. doi:10.3390/s150922941

Wu, L., Ogawa, Y., & Tagawa, A. (2008). Electrical impedance spectroscopy analysis of eggplant pulp and effects of drying and freezing–thawing treatments on its impedance characteristics. Journal of Food Engineering, 87(2), 274-280. doi:10.1016/j.jfoodeng.2007.12.003

Serrano-Pallicer, E., Muñoz-Albero, M., Pérez-Fuster, C., Masot Peris, R., & Laguarda-Miró, N. (2018). Early Detection of Freeze Damage in Navelate Oranges with Electrochemical Impedance Spectroscopy. Sensors, 18(12), 4503. doi:10.3390/s18124503

Grossi, M., & Riccò, B. (2017). Electrical impedance spectroscopy (EIS) for biological analysis and food characterization: a review. Journal of Sensors and Sensor Systems, 6(2), 303-325. doi:10.5194/jsss-6-303-2017

Chowdhury, A., Kanti Bera, T., Ghoshal, D., & Chakraborty, B. (2016). Electrical Impedance Variations in Banana Ripening: An Analytical Study with Electrical Impedance Spectroscopy. Journal of Food Process Engineering, 40(2), e12387. doi:10.1111/jfpe.12387

Bauchot, A. D., Harker, F. R., & Arnold, W. M. (2000). The use of electrical impedance spectroscopy to assess the physiological condition of kiwifruit. Postharvest Biology and Technology, 18(1), 9-18. doi:10.1016/s0925-5214(99)00056-3

Figueiredo Neto, A., Cárdenas Olivier, N., Rabelo Cordeiro, E., & Pequeno de Oliveira, H. (2017). Determination of mango ripening degree by electrical impedance spectroscopy. Computers and Electronics in Agriculture, 143, 222-226. doi:10.1016/j.compag.2017.10.018

Benavente, J., Ramos-Barrado, J. ., & Heredia, A. (1998). A study of the electrical behaviour of isolated tomato cuticular membranes and cutin by impedance spectroscopy measurements. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 140(1-3), 333-338. doi:10.1016/s0927-7757(97)00290-2

Ando, Y., Maeda, Y., Mizutani, K., Wakatsuki, N., Hagiwara, S., & Nabetani, H. (2016). Impact of blanching and freeze-thaw pretreatment on drying rate of carrot roots in relation to changes in cell membrane function and cell wall structure. LWT - Food Science and Technology, 71, 40-46. doi:10.1016/j.lwt.2016.03.019

Ando, Y., Maeda, Y., Mizutani, K., Wakatsuki, N., Hagiwara, S., & Nabetani, H. (2016). Effect of air-dehydration pretreatment before freezing on the electrical impedance characteristics and texture of carrots. Journal of Food Engineering, 169, 114-121. doi:10.1016/j.jfoodeng.2015.08.026

Fuentes, A., Vázquez-Gutiérrez, J. L., Pérez-Gago, M. B., Vonasek, E., Nitin, N., & Barrett, D. M. (2014). Application of nondestructive impedance spectroscopy to determination of the effect of temperature on potato microstructure and texture. Journal of Food Engineering, 133, 16-22. doi:10.1016/j.jfoodeng.2014.02.016

M’hiri, N., Veys-Renaux, D., Rocca, E., Ioannou, I., Boudhrioua, N. M., & Ghoul, M. (2016). Corrosion inhibition of carbon steel in acidic medium by orange peel extract and its main antioxidant compounds. Corrosion Science, 102, 55-62. doi:10.1016/j.corsci.2015.09.017

Conesa, C., Ibáñez Civera, J., Seguí, L., Fito, P., & Laguarda-Miró, N. (2016). An Electrochemical Impedance Spectroscopy System for Monitoring Pineapple Waste Saccharification. Sensors, 16(2), 188. doi:10.3390/s16020188

Conesa, C., Sánchez, L. G., Seguí, L., Fito, P., & Laguarda-Miró, N. (2017). Ethanol quantification in pineapple waste by an electrochemical impedance spectroscopy-based system and artificial neural networks. Chemometrics and Intelligent Laboratory Systems, 161, 1-7. doi:10.1016/j.chemolab.2016.12.005

Ulrich, C., Petersson, H., Sundgren, H., Björefors, F., & Krantz-Rülcker, C. (2007). Simultaneous estimation of soot and diesel contamination in engine oil using electrochemical impedance spectroscopy. Sensors and Actuators B: Chemical, 127(2), 613-618. doi:10.1016/j.snb.2007.05.014

Olivati, C. A., Riul, A., Balogh, D. T., Oliveira, O. N., & Ferreira, M. (2008). Detection of phenolic compounds using impedance spectroscopy measurements. Bioprocess and Biosystems Engineering, 32(1), 41-46. doi:10.1007/s00449-008-0218-4

Martínez Gil, P., Laguarda-Miro, N., Camino, J. S., & Peris, R. M. (2013). Glyphosate detection with ammonium nitrate and humic acids as potential interfering substances by pulsed voltammetry technique. Talanta, 115, 702-705. doi:10.1016/j.talanta.2013.06.030

Górski, Ł., Sordoń, W., Ciepiela, F., Kubiak, W. W., & Jakubowska, M. (2016). Voltammetric classification of ciders with PLS-DA. Talanta, 146, 231-236. doi:10.1016/j.talanta.2015.08.027

Kumar, G., & Buchheit, R. G. (2008). Use of Artificial Neural Network Models to Predict Coated Component Life from Short-Term Electrochemical Impedance Spectroscopy Measurements. CORROSION, 64(3), 241-254. doi:10.5006/1.3278469

Eddahech, A., Briat, O., Bertrand, N., Delétage, J.-Y., & Vinassa, J.-M. (2012). Behavior and state-of-health monitoring of Li-ion batteries using impedance spectroscopy and recurrent neural networks. International Journal of Electrical Power & Energy Systems, 42(1), 487-494. doi:10.1016/j.ijepes.2012.04.050

Conesa, C., Seguí, L., Laguarda-Miró, N., & Fito, P. (2016). Microwaves as a pretreatment for enhancing enzymatic hydrolysis of pineapple industrial waste for bioethanol production. Food and Bioproducts Processing, 100, 203-213. doi:10.1016/j.fbp.2016.07.001

Masot, R., Alcañiz, M., Fuentes, A., Schmidt, F. C., Barat, J. M., Gil, L., … Soto, J. (2010). Design of a low-cost non-destructive system for punctual measurements of salt levels in food products using impedance spectroscopy. Sensors and Actuators A: Physical, 158(2), 217-223. doi:10.1016/j.sna.2010.01.010

Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-regression: a basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58(2), 109-130. doi:10.1016/s0169-7439(01)00155-1

Legin, Zadorozhnaya, Khaydukova, Kirsanov, Rybakin, Zagrebin, … Legin. (2019). Rapid Evaluation of Integral Quality and Safety of Surface and Waste Waters by a Multisensor System (Electronic Tongue). Sensors, 19(9), 2019. doi:10.3390/s19092019

Garcia-Breijo, E., Atkinson, J., Gil-Sanchez, L., Masot, R., Ibañez, J., Garrigues, J., … Olguin, C. (2011). A comparison study of pattern recognition algorithms implemented on a microcontroller for use in an electronic tongue for monitoring drinking waters. Sensors and Actuators A: Physical, 172(2), 570-582. doi:10.1016/j.sna.2011.09.039

Garcia-Breijo, E., Garrigues, J., Sanchez, L., & Laguarda-Miro, N. (2013). An Embedded Simplified Fuzzy ARTMAP Implemented on a Microcontroller for Food Classification. Sensors, 13(8), 10418-10429. doi:10.3390/s130810418

Brezmes, J., Cabre, P., Rojo, S., Llobet, E., Vilanova, X., & Correig, X. (2005). Discrimination between different samples of olive oil using variable selection techniques and modified fuzzy artmap neural networks. IEEE Sensors Journal, 5(3), 463-470. doi:10.1109/jsen.2005.846186

Ibáñez Civera, J., Garcia Breijo, E., Laguarda Miró, N., Gil Sánchez, L., Garrigues Baixauli, J., Romero Gil, I., … Alcañiz Fillol, M. (2011). Artificial neural network onto eight bit microcontroller for Secchi depth calculation. Sensors and Actuators B: Chemical, 156(1), 132-139. doi:10.1016/j.snb.2011.04.001

Fricke, H., & Morse, S. (1925). THE ELECTRIC RESISTANCE AND CAPACITY OF BLOOD FOR FREQUENCIES BETWEEN 800 AND 4½ MILLION CYCLES. Journal of General Physiology, 9(2), 153-167. doi:10.1085/jgp.9.2.153

Damez, J.-L., Clerjon, S., Abouelkaram, S., & Lepetit, J. (2007). Dielectric behavior of beef meat in the 1–1500kHz range: Simulation with the Fricke/Cole–Cole model. Meat Science, 77(4), 512-519. doi:10.1016/j.meatsci.2007.04.028

Zhang, L., Shen, H., & Luo, Y. (2010). Study on the electric conduction properties of fresh and frozen-thawed grass carp (Ctenopharyngodon idellus) and tilapia(Oreochromis niloticus). International Journal of Food Science & Technology, 45(12), 2560-2564. doi:10.1111/j.1365-2621.2010.02428.x

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem