Mostrar el registro sencillo del ítem
dc.contributor.author | Ochandio Fernández, A. | es_ES |
dc.contributor.author | Olguín Pinatti, Cristian Ariel | es_ES |
dc.contributor.author | Masot Peris, Rafael | es_ES |
dc.contributor.author | Laguarda-Miro, Nicolas | es_ES |
dc.date.accessioned | 2020-02-27T21:01:48Z | |
dc.date.available | 2020-02-27T21:01:48Z | |
dc.date.issued | 2019 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/137955 | |
dc.description.abstract | [EN] Lemon is the most sensitive citrus fruit to cold. Therefore, it is of capital importance to detect and avoid temperatures that could damage the fruit both when it is still in the tree and in its subsequent commercialization. In order to rapidly identify frost damage in this fruit, a system based on the electrochemical impedance spectroscopy technique (EIS) was used. This system consists of a signal generator device associated with a personal computer (PC) to control the system and a double-needle stainless steel electrode. Tests with a set of fruits both natural and subsequently frozen-thawed allowed us to differentiate the behavior of the impedance value depending on whether the sample had been previously frozen or not by means of a single principal components analysis (PCA) and a partial least squares discriminant analysis (PLS-DA). Artificial neural networks (ANNs) were used to generate a prediction model able to identify the damaged fruits just 24 hours after the cold phenomenon occurred, with sufficient robustness and reliability (CCR = 100%). | es_ES |
dc.description.sponsorship | This research was funded by the the Spanish Government/FEDER funds (RTI2018-100910-B-C43) (MINECO/FEDER) and the Conselleria d'Educacio, Investigacio, Cultura i Esport de la Generalitat Valenciana (GV/2018/090). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Sensors | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Electrochemical impedance spectroscopy | es_ES |
dc.subject | Lemon | es_ES |
dc.subject | Freeze damage | es_ES |
dc.subject | Detection | es_ES |
dc.subject.classification | INGENIERIA QUIMICA | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Freeze-Damage Detection in Lemons Using Electrochemical Impedance Spectroscopy | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/s19184051 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//GV%2F2018%2F090/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-100910-B-C43/ES/DESARROLLO DE PLATAFORMAS DE DETECCION Y TERAPEUTICAS PARA APLICACIONES BIOMEDICAS BASADAS EN DISPOSITIVOS ELECTRONICOS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.description.bibliographicCitation | Ochandio Fernández, A.; Olguín Pinatti, CA.; Masot Peris, R.; Laguarda-Miro, N. (2019). Freeze-Damage Detection in Lemons Using Electrochemical Impedance Spectroscopy. Sensors. 19(18):1-12. https://doi.org/10.3390/s19184051 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/s19184051 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 12 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 19 | es_ES |
dc.description.issue | 18 | es_ES |
dc.identifier.eissn | 1424-8220 | es_ES |
dc.relation.pasarela | S\403325 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Zabihi, H., Vogeler, I., Amin, Z. M., & Gourabi, B. R. (2016). Mapping the sensitivity of citrus crops to freeze stress using a geographical information system in Ramsar, Iran. Weather and Climate Extremes, 14, 17-23. doi:10.1016/j.wace.2016.10.002 | es_ES |
dc.description.references | Tan, E. S., Slaughter, D. C., & Thompson, J. F. (2005). Freeze damage detection in oranges using gas sensors. Postharvest Biology and Technology, 35(2), 177-182. doi:10.1016/j.postharvbio.2004.07.008 | es_ES |
dc.description.references | Slaughter, D. C., Obenland, D. M., Thompson, J. F., Arpaia, M. L., & Margosan, D. A. (2008). Non-destructive freeze damage detection in oranges using machine vision and ultraviolet fluorescence. Postharvest Biology and Technology, 48(3), 341-346. doi:10.1016/j.postharvbio.2007.09.012 | es_ES |
dc.description.references | Sala, J. M., Sanchez-Ballesta, M. T., Alférez, F., Mulas, M., Zacarias, L., & Lafuente, M. T. (2005). A comparative study of the postharvest performance of an ABA-deficient mutant of oranges. Postharvest Biology and Technology, 37(3), 232-240. doi:10.1016/j.postharvbio.2005.05.006 | es_ES |
dc.description.references | Siboza, X. I., Bertling, I., & Odindo, A. O. (2014). Salicylic acid and methyl jasmonate improve chilling tolerance in cold-stored lemon fruit (Citrus limon). Journal of Plant Physiology, 171(18), 1722-1731. doi:10.1016/j.jplph.2014.05.012 | es_ES |
dc.description.references | Jha, P. K., Xanthakis, E., Chevallier, S., Jury, V., & Le-Bail, A. (2019). Assessment of freeze damage in fruits and vegetables. Food Research International, 121, 479-496. doi:10.1016/j.foodres.2018.12.002 | es_ES |
dc.description.references | Sala, J. M., & Lafuente, M. T. (1999). Catalase in the Heat-Induced Chilling Tolerance of Cold-Stored Hybrid Fortune Mandarin Fruits. Journal of Agricultural and Food Chemistry, 47(6), 2410-2414. doi:10.1021/jf980805e | es_ES |
dc.description.references | Moomkesh, S., Mireei, S. A., Sadeghi, M., & Nazeri, M. (2017). Early detection of freezing damage in sweet lemons using Vis/SWNIR spectroscopy. Biosystems Engineering, 164, 157-170. doi:10.1016/j.biosystemseng.2017.10.009 | es_ES |
dc.description.references | Obenland, D. M., Aung, L. H., Bridges, D. L., & Mackey, B. E. (2003). Volatile Emissions of Navel Oranges as Predictors of Freeze Damage. Journal of Agricultural and Food Chemistry, 51(11), 3367-3371. doi:10.1021/jf021109o | es_ES |
dc.description.references | Gambhir, P. N., Choi, Y. J., Slaughter, D. C., Thompson, J. F., & McCarthy, M. J. (2005). Proton spin-spin relaxation time of peel and flesh of navel orange varieties exposed to freezing temperature. Journal of the Science of Food and Agriculture, 85(14), 2482-2486. doi:10.1002/jsfa.2266 | es_ES |
dc.description.references | Fuentes, A., Masot, R., Fernández-Segovia, I., Ruiz-Rico, M., Alcañiz, M., & Barat, J. M. (2013). Differentiation between fresh and frozen-thawed sea bream (Sparus aurata) using impedance spectroscopy techniques. Innovative Food Science & Emerging Technologies, 19, 210-217. doi:10.1016/j.ifset.2013.05.001 | es_ES |
dc.description.references | Conesa, C., García-Breijo, E., Loeff, E., Seguí, L., Fito, P., & Laguarda-Miró, N. (2015). An Electrochemical Impedance Spectroscopy-Based Technique to Identify and Quantify Fermentable Sugars in Pineapple Waste Valorization for Bioethanol Production. Sensors, 15(9), 22941-22955. doi:10.3390/s150922941 | es_ES |
dc.description.references | Wu, L., Ogawa, Y., & Tagawa, A. (2008). Electrical impedance spectroscopy analysis of eggplant pulp and effects of drying and freezing–thawing treatments on its impedance characteristics. Journal of Food Engineering, 87(2), 274-280. doi:10.1016/j.jfoodeng.2007.12.003 | es_ES |
dc.description.references | Serrano-Pallicer, E., Muñoz-Albero, M., Pérez-Fuster, C., Masot Peris, R., & Laguarda-Miró, N. (2018). Early Detection of Freeze Damage in Navelate Oranges with Electrochemical Impedance Spectroscopy. Sensors, 18(12), 4503. doi:10.3390/s18124503 | es_ES |
dc.description.references | Grossi, M., & Riccò, B. (2017). Electrical impedance spectroscopy (EIS) for biological analysis and food characterization: a review. Journal of Sensors and Sensor Systems, 6(2), 303-325. doi:10.5194/jsss-6-303-2017 | es_ES |
dc.description.references | Chowdhury, A., Kanti Bera, T., Ghoshal, D., & Chakraborty, B. (2016). Electrical Impedance Variations in Banana Ripening: An Analytical Study with Electrical Impedance Spectroscopy. Journal of Food Process Engineering, 40(2), e12387. doi:10.1111/jfpe.12387 | es_ES |
dc.description.references | Bauchot, A. D., Harker, F. R., & Arnold, W. M. (2000). The use of electrical impedance spectroscopy to assess the physiological condition of kiwifruit. Postharvest Biology and Technology, 18(1), 9-18. doi:10.1016/s0925-5214(99)00056-3 | es_ES |
dc.description.references | Figueiredo Neto, A., Cárdenas Olivier, N., Rabelo Cordeiro, E., & Pequeno de Oliveira, H. (2017). Determination of mango ripening degree by electrical impedance spectroscopy. Computers and Electronics in Agriculture, 143, 222-226. doi:10.1016/j.compag.2017.10.018 | es_ES |
dc.description.references | Benavente, J., Ramos-Barrado, J. ., & Heredia, A. (1998). A study of the electrical behaviour of isolated tomato cuticular membranes and cutin by impedance spectroscopy measurements. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 140(1-3), 333-338. doi:10.1016/s0927-7757(97)00290-2 | es_ES |
dc.description.references | Ando, Y., Maeda, Y., Mizutani, K., Wakatsuki, N., Hagiwara, S., & Nabetani, H. (2016). Impact of blanching and freeze-thaw pretreatment on drying rate of carrot roots in relation to changes in cell membrane function and cell wall structure. LWT - Food Science and Technology, 71, 40-46. doi:10.1016/j.lwt.2016.03.019 | es_ES |
dc.description.references | Ando, Y., Maeda, Y., Mizutani, K., Wakatsuki, N., Hagiwara, S., & Nabetani, H. (2016). Effect of air-dehydration pretreatment before freezing on the electrical impedance characteristics and texture of carrots. Journal of Food Engineering, 169, 114-121. doi:10.1016/j.jfoodeng.2015.08.026 | es_ES |
dc.description.references | Fuentes, A., Vázquez-Gutiérrez, J. L., Pérez-Gago, M. B., Vonasek, E., Nitin, N., & Barrett, D. M. (2014). Application of nondestructive impedance spectroscopy to determination of the effect of temperature on potato microstructure and texture. Journal of Food Engineering, 133, 16-22. doi:10.1016/j.jfoodeng.2014.02.016 | es_ES |
dc.description.references | M’hiri, N., Veys-Renaux, D., Rocca, E., Ioannou, I., Boudhrioua, N. M., & Ghoul, M. (2016). Corrosion inhibition of carbon steel in acidic medium by orange peel extract and its main antioxidant compounds. Corrosion Science, 102, 55-62. doi:10.1016/j.corsci.2015.09.017 | es_ES |
dc.description.references | Conesa, C., Ibáñez Civera, J., Seguí, L., Fito, P., & Laguarda-Miró, N. (2016). An Electrochemical Impedance Spectroscopy System for Monitoring Pineapple Waste Saccharification. Sensors, 16(2), 188. doi:10.3390/s16020188 | es_ES |
dc.description.references | Conesa, C., Sánchez, L. G., Seguí, L., Fito, P., & Laguarda-Miró, N. (2017). Ethanol quantification in pineapple waste by an electrochemical impedance spectroscopy-based system and artificial neural networks. Chemometrics and Intelligent Laboratory Systems, 161, 1-7. doi:10.1016/j.chemolab.2016.12.005 | es_ES |
dc.description.references | Ulrich, C., Petersson, H., Sundgren, H., Björefors, F., & Krantz-Rülcker, C. (2007). Simultaneous estimation of soot and diesel contamination in engine oil using electrochemical impedance spectroscopy. Sensors and Actuators B: Chemical, 127(2), 613-618. doi:10.1016/j.snb.2007.05.014 | es_ES |
dc.description.references | Olivati, C. A., Riul, A., Balogh, D. T., Oliveira, O. N., & Ferreira, M. (2008). Detection of phenolic compounds using impedance spectroscopy measurements. Bioprocess and Biosystems Engineering, 32(1), 41-46. doi:10.1007/s00449-008-0218-4 | es_ES |
dc.description.references | Martínez Gil, P., Laguarda-Miro, N., Camino, J. S., & Peris, R. M. (2013). Glyphosate detection with ammonium nitrate and humic acids as potential interfering substances by pulsed voltammetry technique. Talanta, 115, 702-705. doi:10.1016/j.talanta.2013.06.030 | es_ES |
dc.description.references | Górski, Ł., Sordoń, W., Ciepiela, F., Kubiak, W. W., & Jakubowska, M. (2016). Voltammetric classification of ciders with PLS-DA. Talanta, 146, 231-236. doi:10.1016/j.talanta.2015.08.027 | es_ES |
dc.description.references | Kumar, G., & Buchheit, R. G. (2008). Use of Artificial Neural Network Models to Predict Coated Component Life from Short-Term Electrochemical Impedance Spectroscopy Measurements. CORROSION, 64(3), 241-254. doi:10.5006/1.3278469 | es_ES |
dc.description.references | Eddahech, A., Briat, O., Bertrand, N., Delétage, J.-Y., & Vinassa, J.-M. (2012). Behavior and state-of-health monitoring of Li-ion batteries using impedance spectroscopy and recurrent neural networks. International Journal of Electrical Power & Energy Systems, 42(1), 487-494. doi:10.1016/j.ijepes.2012.04.050 | es_ES |
dc.description.references | Conesa, C., Seguí, L., Laguarda-Miró, N., & Fito, P. (2016). Microwaves as a pretreatment for enhancing enzymatic hydrolysis of pineapple industrial waste for bioethanol production. Food and Bioproducts Processing, 100, 203-213. doi:10.1016/j.fbp.2016.07.001 | es_ES |
dc.description.references | Masot, R., Alcañiz, M., Fuentes, A., Schmidt, F. C., Barat, J. M., Gil, L., … Soto, J. (2010). Design of a low-cost non-destructive system for punctual measurements of salt levels in food products using impedance spectroscopy. Sensors and Actuators A: Physical, 158(2), 217-223. doi:10.1016/j.sna.2010.01.010 | es_ES |
dc.description.references | Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-regression: a basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58(2), 109-130. doi:10.1016/s0169-7439(01)00155-1 | es_ES |
dc.description.references | Legin, Zadorozhnaya, Khaydukova, Kirsanov, Rybakin, Zagrebin, … Legin. (2019). Rapid Evaluation of Integral Quality and Safety of Surface and Waste Waters by a Multisensor System (Electronic Tongue). Sensors, 19(9), 2019. doi:10.3390/s19092019 | es_ES |
dc.description.references | Garcia-Breijo, E., Atkinson, J., Gil-Sanchez, L., Masot, R., Ibañez, J., Garrigues, J., … Olguin, C. (2011). A comparison study of pattern recognition algorithms implemented on a microcontroller for use in an electronic tongue for monitoring drinking waters. Sensors and Actuators A: Physical, 172(2), 570-582. doi:10.1016/j.sna.2011.09.039 | es_ES |
dc.description.references | Garcia-Breijo, E., Garrigues, J., Sanchez, L., & Laguarda-Miro, N. (2013). An Embedded Simplified Fuzzy ARTMAP Implemented on a Microcontroller for Food Classification. Sensors, 13(8), 10418-10429. doi:10.3390/s130810418 | es_ES |
dc.description.references | Brezmes, J., Cabre, P., Rojo, S., Llobet, E., Vilanova, X., & Correig, X. (2005). Discrimination between different samples of olive oil using variable selection techniques and modified fuzzy artmap neural networks. IEEE Sensors Journal, 5(3), 463-470. doi:10.1109/jsen.2005.846186 | es_ES |
dc.description.references | Ibáñez Civera, J., Garcia Breijo, E., Laguarda Miró, N., Gil Sánchez, L., Garrigues Baixauli, J., Romero Gil, I., … Alcañiz Fillol, M. (2011). Artificial neural network onto eight bit microcontroller for Secchi depth calculation. Sensors and Actuators B: Chemical, 156(1), 132-139. doi:10.1016/j.snb.2011.04.001 | es_ES |
dc.description.references | Fricke, H., & Morse, S. (1925). THE ELECTRIC RESISTANCE AND CAPACITY OF BLOOD FOR FREQUENCIES BETWEEN 800 AND 4½ MILLION CYCLES. Journal of General Physiology, 9(2), 153-167. doi:10.1085/jgp.9.2.153 | es_ES |
dc.description.references | Damez, J.-L., Clerjon, S., Abouelkaram, S., & Lepetit, J. (2007). Dielectric behavior of beef meat in the 1–1500kHz range: Simulation with the Fricke/Cole–Cole model. Meat Science, 77(4), 512-519. doi:10.1016/j.meatsci.2007.04.028 | es_ES |
dc.description.references | Zhang, L., Shen, H., & Luo, Y. (2010). Study on the electric conduction properties of fresh and frozen-thawed grass carp (Ctenopharyngodon idellus) and tilapia(Oreochromis niloticus). International Journal of Food Science & Technology, 45(12), 2560-2564. doi:10.1111/j.1365-2621.2010.02428.x | es_ES |