- -

Freeze-Damage Detection in Lemons Using Electrochemical Impedance Spectroscopy

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Freeze-Damage Detection in Lemons Using Electrochemical Impedance Spectroscopy

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ochandio Fernández, A. es_ES
dc.contributor.author Olguín Pinatti, Cristian Ariel es_ES
dc.contributor.author Masot Peris, Rafael es_ES
dc.contributor.author Laguarda-Miro, Nicolas es_ES
dc.date.accessioned 2020-02-27T21:01:48Z
dc.date.available 2020-02-27T21:01:48Z
dc.date.issued 2019 es_ES
dc.identifier.uri http://hdl.handle.net/10251/137955
dc.description.abstract [EN] Lemon is the most sensitive citrus fruit to cold. Therefore, it is of capital importance to detect and avoid temperatures that could damage the fruit both when it is still in the tree and in its subsequent commercialization. In order to rapidly identify frost damage in this fruit, a system based on the electrochemical impedance spectroscopy technique (EIS) was used. This system consists of a signal generator device associated with a personal computer (PC) to control the system and a double-needle stainless steel electrode. Tests with a set of fruits both natural and subsequently frozen-thawed allowed us to differentiate the behavior of the impedance value depending on whether the sample had been previously frozen or not by means of a single principal components analysis (PCA) and a partial least squares discriminant analysis (PLS-DA). Artificial neural networks (ANNs) were used to generate a prediction model able to identify the damaged fruits just 24 hours after the cold phenomenon occurred, with sufficient robustness and reliability (CCR = 100%). es_ES
dc.description.sponsorship This research was funded by the the Spanish Government/FEDER funds (RTI2018-100910-B-C43) (MINECO/FEDER) and the Conselleria d'Educacio, Investigacio, Cultura i Esport de la Generalitat Valenciana (GV/2018/090). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Electrochemical impedance spectroscopy es_ES
dc.subject Lemon es_ES
dc.subject Freeze damage es_ES
dc.subject Detection es_ES
dc.subject.classification INGENIERIA QUIMICA es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Freeze-Damage Detection in Lemons Using Electrochemical Impedance Spectroscopy es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s19184051 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GV%2F2018%2F090/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-100910-B-C43/ES/DESARROLLO DE PLATAFORMAS DE DETECCION Y TERAPEUTICAS PARA APLICACIONES BIOMEDICAS BASADAS EN DISPOSITIVOS ELECTRONICOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Ochandio Fernández, A.; Olguín Pinatti, CA.; Masot Peris, R.; Laguarda-Miro, N. (2019). Freeze-Damage Detection in Lemons Using Electrochemical Impedance Spectroscopy. Sensors. 19(18):1-12. https://doi.org/10.3390/s19184051 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/s19184051 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 19 es_ES
dc.description.issue 18 es_ES
dc.identifier.eissn 1424-8220 es_ES
dc.relation.pasarela S\403325 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Zabihi, H., Vogeler, I., Amin, Z. M., & Gourabi, B. R. (2016). Mapping the sensitivity of citrus crops to freeze stress using a geographical information system in Ramsar, Iran. Weather and Climate Extremes, 14, 17-23. doi:10.1016/j.wace.2016.10.002 es_ES
dc.description.references Tan, E. S., Slaughter, D. C., & Thompson, J. F. (2005). Freeze damage detection in oranges using gas sensors. Postharvest Biology and Technology, 35(2), 177-182. doi:10.1016/j.postharvbio.2004.07.008 es_ES
dc.description.references Slaughter, D. C., Obenland, D. M., Thompson, J. F., Arpaia, M. L., & Margosan, D. A. (2008). Non-destructive freeze damage detection in oranges using machine vision and ultraviolet fluorescence. Postharvest Biology and Technology, 48(3), 341-346. doi:10.1016/j.postharvbio.2007.09.012 es_ES
dc.description.references Sala, J. M., Sanchez-Ballesta, M. T., Alférez, F., Mulas, M., Zacarias, L., & Lafuente, M. T. (2005). A comparative study of the postharvest performance of an ABA-deficient mutant of oranges. Postharvest Biology and Technology, 37(3), 232-240. doi:10.1016/j.postharvbio.2005.05.006 es_ES
dc.description.references Siboza, X. I., Bertling, I., & Odindo, A. O. (2014). Salicylic acid and methyl jasmonate improve chilling tolerance in cold-stored lemon fruit (Citrus limon). Journal of Plant Physiology, 171(18), 1722-1731. doi:10.1016/j.jplph.2014.05.012 es_ES
dc.description.references Jha, P. K., Xanthakis, E., Chevallier, S., Jury, V., & Le-Bail, A. (2019). Assessment of freeze damage in fruits and vegetables. Food Research International, 121, 479-496. doi:10.1016/j.foodres.2018.12.002 es_ES
dc.description.references Sala, J. M., & Lafuente, M. T. (1999). Catalase in the Heat-Induced Chilling Tolerance of Cold-Stored Hybrid Fortune Mandarin Fruits. Journal of Agricultural and Food Chemistry, 47(6), 2410-2414. doi:10.1021/jf980805e es_ES
dc.description.references Moomkesh, S., Mireei, S. A., Sadeghi, M., & Nazeri, M. (2017). Early detection of freezing damage in sweet lemons using Vis/SWNIR spectroscopy. Biosystems Engineering, 164, 157-170. doi:10.1016/j.biosystemseng.2017.10.009 es_ES
dc.description.references Obenland, D. M., Aung, L. H., Bridges, D. L., & Mackey, B. E. (2003). Volatile Emissions of Navel Oranges as Predictors of Freeze Damage. Journal of Agricultural and Food Chemistry, 51(11), 3367-3371. doi:10.1021/jf021109o es_ES
dc.description.references Gambhir, P. N., Choi, Y. J., Slaughter, D. C., Thompson, J. F., & McCarthy, M. J. (2005). Proton spin-spin relaxation time of peel and flesh of navel orange varieties exposed to freezing temperature. Journal of the Science of Food and Agriculture, 85(14), 2482-2486. doi:10.1002/jsfa.2266 es_ES
dc.description.references Fuentes, A., Masot, R., Fernández-Segovia, I., Ruiz-Rico, M., Alcañiz, M., & Barat, J. M. (2013). Differentiation between fresh and frozen-thawed sea bream (Sparus aurata) using impedance spectroscopy techniques. Innovative Food Science & Emerging Technologies, 19, 210-217. doi:10.1016/j.ifset.2013.05.001 es_ES
dc.description.references Conesa, C., García-Breijo, E., Loeff, E., Seguí, L., Fito, P., & Laguarda-Miró, N. (2015). An Electrochemical Impedance Spectroscopy-Based Technique to Identify and Quantify Fermentable Sugars in Pineapple Waste Valorization for Bioethanol Production. Sensors, 15(9), 22941-22955. doi:10.3390/s150922941 es_ES
dc.description.references Wu, L., Ogawa, Y., & Tagawa, A. (2008). Electrical impedance spectroscopy analysis of eggplant pulp and effects of drying and freezing–thawing treatments on its impedance characteristics. Journal of Food Engineering, 87(2), 274-280. doi:10.1016/j.jfoodeng.2007.12.003 es_ES
dc.description.references Serrano-Pallicer, E., Muñoz-Albero, M., Pérez-Fuster, C., Masot Peris, R., & Laguarda-Miró, N. (2018). Early Detection of Freeze Damage in Navelate Oranges with Electrochemical Impedance Spectroscopy. Sensors, 18(12), 4503. doi:10.3390/s18124503 es_ES
dc.description.references Grossi, M., & Riccò, B. (2017). Electrical impedance spectroscopy (EIS) for biological analysis and food characterization: a review. Journal of Sensors and Sensor Systems, 6(2), 303-325. doi:10.5194/jsss-6-303-2017 es_ES
dc.description.references Chowdhury, A., Kanti Bera, T., Ghoshal, D., & Chakraborty, B. (2016). Electrical Impedance Variations in Banana Ripening: An Analytical Study with Electrical Impedance Spectroscopy. Journal of Food Process Engineering, 40(2), e12387. doi:10.1111/jfpe.12387 es_ES
dc.description.references Bauchot, A. D., Harker, F. R., & Arnold, W. M. (2000). The use of electrical impedance spectroscopy to assess the physiological condition of kiwifruit. Postharvest Biology and Technology, 18(1), 9-18. doi:10.1016/s0925-5214(99)00056-3 es_ES
dc.description.references Figueiredo Neto, A., Cárdenas Olivier, N., Rabelo Cordeiro, E., & Pequeno de Oliveira, H. (2017). Determination of mango ripening degree by electrical impedance spectroscopy. Computers and Electronics in Agriculture, 143, 222-226. doi:10.1016/j.compag.2017.10.018 es_ES
dc.description.references Benavente, J., Ramos-Barrado, J. ., & Heredia, A. (1998). A study of the electrical behaviour of isolated tomato cuticular membranes and cutin by impedance spectroscopy measurements. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 140(1-3), 333-338. doi:10.1016/s0927-7757(97)00290-2 es_ES
dc.description.references Ando, Y., Maeda, Y., Mizutani, K., Wakatsuki, N., Hagiwara, S., & Nabetani, H. (2016). Impact of blanching and freeze-thaw pretreatment on drying rate of carrot roots in relation to changes in cell membrane function and cell wall structure. LWT - Food Science and Technology, 71, 40-46. doi:10.1016/j.lwt.2016.03.019 es_ES
dc.description.references Ando, Y., Maeda, Y., Mizutani, K., Wakatsuki, N., Hagiwara, S., & Nabetani, H. (2016). Effect of air-dehydration pretreatment before freezing on the electrical impedance characteristics and texture of carrots. Journal of Food Engineering, 169, 114-121. doi:10.1016/j.jfoodeng.2015.08.026 es_ES
dc.description.references Fuentes, A., Vázquez-Gutiérrez, J. L., Pérez-Gago, M. B., Vonasek, E., Nitin, N., & Barrett, D. M. (2014). Application of nondestructive impedance spectroscopy to determination of the effect of temperature on potato microstructure and texture. Journal of Food Engineering, 133, 16-22. doi:10.1016/j.jfoodeng.2014.02.016 es_ES
dc.description.references M’hiri, N., Veys-Renaux, D., Rocca, E., Ioannou, I., Boudhrioua, N. M., & Ghoul, M. (2016). Corrosion inhibition of carbon steel in acidic medium by orange peel extract and its main antioxidant compounds. Corrosion Science, 102, 55-62. doi:10.1016/j.corsci.2015.09.017 es_ES
dc.description.references Conesa, C., Ibáñez Civera, J., Seguí, L., Fito, P., & Laguarda-Miró, N. (2016). An Electrochemical Impedance Spectroscopy System for Monitoring Pineapple Waste Saccharification. Sensors, 16(2), 188. doi:10.3390/s16020188 es_ES
dc.description.references Conesa, C., Sánchez, L. G., Seguí, L., Fito, P., & Laguarda-Miró, N. (2017). Ethanol quantification in pineapple waste by an electrochemical impedance spectroscopy-based system and artificial neural networks. Chemometrics and Intelligent Laboratory Systems, 161, 1-7. doi:10.1016/j.chemolab.2016.12.005 es_ES
dc.description.references Ulrich, C., Petersson, H., Sundgren, H., Björefors, F., & Krantz-Rülcker, C. (2007). Simultaneous estimation of soot and diesel contamination in engine oil using electrochemical impedance spectroscopy. Sensors and Actuators B: Chemical, 127(2), 613-618. doi:10.1016/j.snb.2007.05.014 es_ES
dc.description.references Olivati, C. A., Riul, A., Balogh, D. T., Oliveira, O. N., & Ferreira, M. (2008). Detection of phenolic compounds using impedance spectroscopy measurements. Bioprocess and Biosystems Engineering, 32(1), 41-46. doi:10.1007/s00449-008-0218-4 es_ES
dc.description.references Martínez Gil, P., Laguarda-Miro, N., Camino, J. S., & Peris, R. M. (2013). Glyphosate detection with ammonium nitrate and humic acids as potential interfering substances by pulsed voltammetry technique. Talanta, 115, 702-705. doi:10.1016/j.talanta.2013.06.030 es_ES
dc.description.references Górski, Ł., Sordoń, W., Ciepiela, F., Kubiak, W. W., & Jakubowska, M. (2016). Voltammetric classification of ciders with PLS-DA. Talanta, 146, 231-236. doi:10.1016/j.talanta.2015.08.027 es_ES
dc.description.references Kumar, G., & Buchheit, R. G. (2008). Use of Artificial Neural Network Models to Predict Coated Component Life from Short-Term Electrochemical Impedance Spectroscopy Measurements. CORROSION, 64(3), 241-254. doi:10.5006/1.3278469 es_ES
dc.description.references Eddahech, A., Briat, O., Bertrand, N., Delétage, J.-Y., & Vinassa, J.-M. (2012). Behavior and state-of-health monitoring of Li-ion batteries using impedance spectroscopy and recurrent neural networks. International Journal of Electrical Power & Energy Systems, 42(1), 487-494. doi:10.1016/j.ijepes.2012.04.050 es_ES
dc.description.references Conesa, C., Seguí, L., Laguarda-Miró, N., & Fito, P. (2016). Microwaves as a pretreatment for enhancing enzymatic hydrolysis of pineapple industrial waste for bioethanol production. Food and Bioproducts Processing, 100, 203-213. doi:10.1016/j.fbp.2016.07.001 es_ES
dc.description.references Masot, R., Alcañiz, M., Fuentes, A., Schmidt, F. C., Barat, J. M., Gil, L., … Soto, J. (2010). Design of a low-cost non-destructive system for punctual measurements of salt levels in food products using impedance spectroscopy. Sensors and Actuators A: Physical, 158(2), 217-223. doi:10.1016/j.sna.2010.01.010 es_ES
dc.description.references Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-regression: a basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58(2), 109-130. doi:10.1016/s0169-7439(01)00155-1 es_ES
dc.description.references Legin, Zadorozhnaya, Khaydukova, Kirsanov, Rybakin, Zagrebin, … Legin. (2019). Rapid Evaluation of Integral Quality and Safety of Surface and Waste Waters by a Multisensor System (Electronic Tongue). Sensors, 19(9), 2019. doi:10.3390/s19092019 es_ES
dc.description.references Garcia-Breijo, E., Atkinson, J., Gil-Sanchez, L., Masot, R., Ibañez, J., Garrigues, J., … Olguin, C. (2011). A comparison study of pattern recognition algorithms implemented on a microcontroller for use in an electronic tongue for monitoring drinking waters. Sensors and Actuators A: Physical, 172(2), 570-582. doi:10.1016/j.sna.2011.09.039 es_ES
dc.description.references Garcia-Breijo, E., Garrigues, J., Sanchez, L., & Laguarda-Miro, N. (2013). An Embedded Simplified Fuzzy ARTMAP Implemented on a Microcontroller for Food Classification. Sensors, 13(8), 10418-10429. doi:10.3390/s130810418 es_ES
dc.description.references Brezmes, J., Cabre, P., Rojo, S., Llobet, E., Vilanova, X., & Correig, X. (2005). Discrimination between different samples of olive oil using variable selection techniques and modified fuzzy artmap neural networks. IEEE Sensors Journal, 5(3), 463-470. doi:10.1109/jsen.2005.846186 es_ES
dc.description.references Ibáñez Civera, J., Garcia Breijo, E., Laguarda Miró, N., Gil Sánchez, L., Garrigues Baixauli, J., Romero Gil, I., … Alcañiz Fillol, M. (2011). Artificial neural network onto eight bit microcontroller for Secchi depth calculation. Sensors and Actuators B: Chemical, 156(1), 132-139. doi:10.1016/j.snb.2011.04.001 es_ES
dc.description.references Fricke, H., & Morse, S. (1925). THE ELECTRIC RESISTANCE AND CAPACITY OF BLOOD FOR FREQUENCIES BETWEEN 800 AND 4½ MILLION CYCLES. Journal of General Physiology, 9(2), 153-167. doi:10.1085/jgp.9.2.153 es_ES
dc.description.references Damez, J.-L., Clerjon, S., Abouelkaram, S., & Lepetit, J. (2007). Dielectric behavior of beef meat in the 1–1500kHz range: Simulation with the Fricke/Cole–Cole model. Meat Science, 77(4), 512-519. doi:10.1016/j.meatsci.2007.04.028 es_ES
dc.description.references Zhang, L., Shen, H., & Luo, Y. (2010). Study on the electric conduction properties of fresh and frozen-thawed grass carp (Ctenopharyngodon idellus) and tilapia(Oreochromis niloticus). International Journal of Food Science & Technology, 45(12), 2560-2564. doi:10.1111/j.1365-2621.2010.02428.x es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem