- -

Sistema de posicionamiento en interiores utilizando señales de radio estaciones FM comerciales y Deep Learning

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Sistema de posicionamiento en interiores utilizando señales de radio estaciones FM comerciales y Deep Learning

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Roman, J. es_ES
dc.contributor.author Marquez-Viloria, D. es_ES
dc.contributor.author Velásquez, R. A. es_ES
dc.contributor.author Botero-Valencia, J. es_ES
dc.date.accessioned 2020-03-04T08:20:34Z
dc.date.available 2020-03-04T08:20:34Z
dc.date.issued 2020-01-01
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/138318
dc.description.abstract [ES] Para dar solución al problema de posicionamiento en interiores, muchos autores han propuesto el uso de diversas técnicas. Desde la simulación de un Sistema de Posicionamiento Global (GPS) a través de antenas Pseudolites, la construcción de campos magnéticos artificiales, el uso de diversos sensores como visión, ultrasonido, unidades de medida inercial, entre otros. Hasta el uso de transmisores y receptores en el rango de la Radio Frecuencia como los presentes en una oficina. Muchos de los sistemas anteriormente mencionados dependen para su correcto funcionamiento de una instalación y configuración de equipos en el lugar de posicionamiento, lo cual puede llevar en ocasiones a costosas implementaciones. Es por esto que para realizar este trabajo hemos propuesto una metodología de posicionamiento en interiores que no requiere de adecuaciones e instalaciones en el lugar de aplicación. La metodología propuesta hace uso de las radio estaciones FM existentes y utiliza algoritmos de Deep Learn es_ES
dc.description.abstract [EN] For the problem of indoor positioning, many authors have proposed the use of diverses techniques. From the simulation of a Global Positioning System (GPS) through Pseudolite antennas, the construction of artificial magnetic fields, the use of various sensors such as vision, ultrasound, inertial measurement units, among others. Up to the use of transmitters and receivers in the range of Radio Frequency as those present in an oce. Many of the aforementioned systems depend for their correct operation of an installation and configuration of equipment in the place of positioning, which can sometimes lead to costly implementations. That is why to carry out this work we have proposed a indoors positioning methodology that does not require adjustments and installations in the place of application. The proposed methodology makes use of the existing FM radio stations and uses Deep Learning algorithms as positioning algorithm. es_ES
dc.description.sponsorship Grupo de investigación AECC (COL0053581) del Instituto Tecnológico Metropolitano, proyecto P14208. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Frequency Modulation es_ES
dc.subject Indoor es_ES
dc.subject Position Estimation es_ES
dc.subject Positioning Systems es_ES
dc.subject Radio Signals es_ES
dc.subject Estimación de la posición es_ES
dc.subject Frecuencia Modulada es_ES
dc.subject Interiores es_ES
dc.subject Señales de radio es_ES
dc.subject Sistemas de posicionamiento es_ES
dc.title Sistema de posicionamiento en interiores utilizando señales de radio estaciones FM comerciales y Deep Learning es_ES
dc.title.alternative Indoor Positioning System Using FM Radio Stations Signals and Deep Learning es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/riai.2019.10894
dc.relation.projectID info:eu-repo/grantAgreement/ITM//P14208/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Roman, J.; Marquez-Viloria, D.; Velásquez, RA.; Botero-Valencia, J. (2020). Sistema de posicionamiento en interiores utilizando señales de radio estaciones FM comerciales y Deep Learning. Revista Iberoamericana de Automática e Informática industrial. 17(1):34-43. https://doi.org/10.4995/riai.2019.10894 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/riai.2019.10894 es_ES
dc.description.upvformatpinicio 34 es_ES
dc.description.upvformatpfin 43 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 17 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\10894 es_ES
dc.contributor.funder Instituto Tecnológico Metropolitano, Colombia es_ES
dc.description.references Adler, S., Schmitt, S., 2014. Path loss and multipath effects in a real world indoor localization scenario. 2014 11th Workshop on Positioning, Navigation and Communication, WPNC 2014 1. https://doi.org/10.1109/WPNC.2014.6843300 es_ES
dc.description.references Al, M., Amali, A., Khir, M. H., Saad, N. M., Dass, S. C., 2017. WiFi Fingerprinting Indoor Positioning with Multiple Access Points in a Single Base Station using Probabilistic Method. International Journal of Applied Engineering Research 12 (6), 1102-1113. es_ES
dc.description.references Ali-Rantala, P., Ukkonen, L., Sydanheimo, L., Keskilammi, M., Kivikoski, M., 2003. Different kinds of walls and their e es_ES
dc.description.references ect on the attenuation of radiowaves indoors. IEEE Antennas and Propagation Society International Symposium. Digest. Held in conjunction with: USNC/CNC/URSI North American Radio Sci. Meeting (Cat. No.03CH37450) 3, 1020-1023. https://doi.org/10.1109/APS.2003.1220085 es_ES
dc.description.references Anastasijevi, A., Neskovi, A., 2012. A practical realisation of kNN indoor positioning model for GSM. In: Telecommunications Forum (TELFOR), 2012 20th. No. m. pp. 1-4. https://doi.org/10.1109/TELFOR.2012.6419576 es_ES
dc.description.references Batistíc, L., Tomic, M., 2018. Overview of Indoor Positioning System Technologies. 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), 473-478. https://doi.org/10.23919/MIPRO.2018.8400090 es_ES
dc.description.references Blankenbach, J., Norrdine, A., Hellmers, H., 2012. A robust and precise 3d indoor positioning system for harsh environments. In: Indoor Positioning and Indoor Navigation (IPIN), 2012 International Conference on. IEEE, pp. 1-8. https://doi.org/10.1109/IPIN.2012.6418863 es_ES
dc.description.references Campos, R., Lovisolo, L., 2015. RF Positioning: Fundamentals, Applications, and Tools:. GNSS technology and applications series. Artech House, Ch. Fundamentals Of RF Fingerprint, pp. 79-109. URL: https://books.google.com.co/books?id=oLTQCgAAQBAJ es_ES
dc.description.references Chao, H., Gu, Y., Gross, J., Guo, G., Fravolini, M. L., Napolitano, M. R., 2013. A comparative study of optical flow and traditional sensors in uav navigation. In: American Control Conference (ACC), 2013. IEEE, pp. 3858-3863. es_ES
dc.description.references Chen, Y., Lymberopoulos, D., Liu, J., Priyantha, B., 2013. Indoor localization using FM signals. IEEE Transactions on Mobile Computing 12 (8), 1502-1517. https://doi.org/10.1109/TMC.2013.58 es_ES
dc.description.references Danymol, R., Ajitha, T., Gandhiraj, R., Dec 2013. Real-time communication system design using rtl-sdr and raspberry pi. In: 2013 International Conference on Advanced Computing and Communication Systems. pp. 1-5. https://doi.org/10.1109/ICACCS.2013.6938691 es_ES
dc.description.references De Angelis, G., Pasku, V., De Angelis, A., Dionigi, M., Mongiardo, M., Moschitta, A., Carbone, P., 2015. An indoor ac magnetic positioning system. IEEE Transactions on Instrumentation and Measurement 64 (5), 1267-1275. https://doi.org/10.1109/TIM.2014.2381353 es_ES
dc.description.references Do, T.-H., Hwang, J., Yoo, M., 2013. Tdoa based indoor visible light positioning systems. In: Ubiquitous and Future Networks (ICUFN), 2013 Fifth International Conference on. IEEE, pp. 456-458. es_ES
dc.description.references Domingo-Perez, F., Lázaro-Galilea, J. L., Martín-Gorostiza, E., Salido-Monzú, D.,Wieser, A., 2014. Evolutionary optimization of sensor deployment for an indoor positioning system with unknown number of anchors. In: Ubiquitous Positioning Indoor Navigation and Location Based Service (UPINLBS), 2014. IEEE, pp. 195-202. https://doi.org/10.1109/UPINLBS.2014.7033728 es_ES
dc.description.references Interaction, M., 2010. Indoor Positioning Using FM Radio. International Journal of Handheld Computing Research (IJHCR) 1 (3), 19-31. https://doi.org/10.4018/jhcr.2010070102 es_ES
dc.description.references Khalajmehrabadi, A., Member, S., Gatsis, N., Akopian, D., Member, S., 2017. Modern WLAN Fingerprinting Indoor Positioning Methods and Deployment Challenges (c), 1-30. https://doi.org/10.1109/COMST.2017.2671454 es_ES
dc.description.references Kuflik, T., Lanir, J., Dim, E., Wecker, A., Corra, M., Zancanaro, M., 2012. Indoor Positioning in Cultural Heritage: Challenges and a Solution, 1-5. https://doi.org/10.1109/EEEI.2012.6376935 es_ES
dc.description.references Le, W., Wang, Z., Wang, J., Zhao, G., Miao, H., 2014. A Novel WIFI Indoor Positioning Method Based on Genetic Algorithm and Twin Support Vector Regression. In: Control and Decision Conference (2014 CCDC), The 26th Chinese. No. 61174059. pp. 4859-4862. https://doi.org/10.1109/CCDC.2014.6853043 es_ES
dc.description.references Le Dortz, N. and Gain, F. and Zetterberg, P., 2012. Wifi Fingerprint Indoor Positioning System Using Probability Distribution Comparison. Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International Conference on, 2301-2304. https://doi.org/10.1109/ICASSP.2012.6288374 es_ES
dc.description.references Lee, C., Chang, Y., Park, G., Ryu, J., Jeong, S.-G., Park, S., Park, J. W., Lee, H. C., Hong, K.-s., Lee, M. H., 2004. Indoor positioning system based on incident angles of infrared emitters. In: Industrial Electronics Society, 2004. IECON 2004. 30th Annual Conference of IEEE. Vol. 3. IEEE, pp. 2218-2222. es_ES
dc.description.references Liu, H., Member, S., Darabi, H., Banerjee, P., Liu, J., 2007. Survey of Wireless Indoor Positioning Techniques and Systems 37 (6), 1067-1080. https://doi.org/10.1109/TSMCC.2007.905750 es_ES
dc.description.references Luo, P., Zhang, M., Zhang, X., Cai, G., Han, D., Li, Q., 2013. An indoor visible light communication positioning system using dual-tone multi-frequency technique. In: Optical Wireless Communications (IWOW), 2013 2nd International Workshop on. IEEE, pp. 25-29. https://doi.org/10.1109/IWOW.2013.6777770 es_ES
dc.description.references Machaj, J., Brida, P., 2014. Using GSM Signals for Fingerprint-based Indoor Positioning System. In: ELEKTRO, 2014. pp. 64-67. https://doi.org/10.1109/ELEKTRO.2014.6847872 es_ES
dc.description.references Mainetti, L., Patrono, L., Sergi, I., 2014. A Survey on Indoor Positioning Systems. 2014 22nd International Conference on Software, Telecommunications and Computer Networks (SoftCOM). https://doi.org/10.1109/SOFTCOM.2014.7039067 es_ES
dc.description.references Matic, A., Popleteev, A., Osmani, V., Mayora-Ibarra, O., 2010. FM radio for indoor localization with spontaneous recalibration. In: Pervasive and Mobile Computing. Vol. 6. Elsevier B.V., pp. 642-656. URL: http://dx.doi.org/10.1016/j.pmcj.2010.08.005 https://doi.org/10.1016/j.pmcj.2010.08.005 es_ES
dc.description.references Moghtadaiee, V., Dempster, A. G., 2014. FM Radio Signals. IEEE TRANSACTIONS ON BROADCASTING 60 (2), 336-346. https://doi.org/10.1109/TBC.2014.2322771 es_ES
dc.description.references Moghtadaiee, V., Dempster, A. G., Lim, S., 2011. Indoor localization using FM radio signals: A fingerprinting approach. 2011 International Conference on Indoor Positioning and Indoor Navigation, IPIN 2011, 3-9. https://doi.org/10.1109/IPIN.2011.6071932 es_ES
dc.description.references Murata, S., Yara, C., Kaneta, K., Ioroi, S., Tanaka, H., 2014. Accurate indoor positioning system using near-ultrasonic sound from a smartphone. In: Next Generation Mobile Apps, Services and Technologies (NGMAST), 2014 Eighth International Conference on. IEEE, pp. 13-18. https://doi.org/10.1109/NGMAST.2014.17 es_ES
dc.description.references Mustafah, Y. M., Azman, A. W., Akbar, F., 2012. Indoor uav positioning using stereo vision sensor. Procedia Engineering 41, 575-579. https://doi.org/10.1016/j.proeng.2012.07.214 es_ES
dc.description.references Niu, J., Wang, B., Cheng, L., Rodrigues, J. J. P. C., 2015. WicLoc : An Indoor Localization System based on WiFi Fingerprints and Crowdsourcing. In: 2015 IEEE International Conference on Communications (ICC). pp. 3008-3013. https://doi.org/10.1109/ICC.2015.7248785 es_ES
dc.description.references Niwa, H., Kodaka, K., Sakamoto, Y., Otake, M., Kawaguchi, S., Fujii, K., Kanemori, Y., Sugano, S., 2008. Gps-based indoor positioning system with multichannel pseudolite. In: Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on. IEEE, pp. 905-910. es_ES
dc.description.references Nuaimi, K. A., Ain, A., Ain, A., 2011. A Survey of Indoor Positioning Systems and Algorithms, 185-190. es_ES
dc.description.references Popleteev, A., Osmani, V., Mayora, O., 2012. Investigation of indoor localization with ambient FM radio stations. In: 2012 IEEE International Conference on Pervasive Computing and Communications. pp. 19-23. https://doi.org/10.1109/PerCom.2012.6199864 es_ES
dc.description.references Regula, G., Gozse, I., Soumelidis, A., 2012. Position estimation using novel calibrated indoor positioning system. In: Instrumentation and Measurement Technology Conference (I2MTC), 2012 IEEE International. IEEE, pp. 1142-1147. https://doi.org/10.1109/I2MTC.2012.6229376 es_ES
dc.description.references Ruiz, D., Garcia, E., Urena, J., Villadangos, J. M., Garcia, J. J., De Marziani, C., 2014. Performance comparison of correlation-based receive filters in an ultrasonic indoor positioning system. In: Instrumentation and Measurement Technology Conference (I2MTC) Proceedings, 2014 IEEE International. IEEE, pp. 1548-1551. https://doi.org/10.1109/I2MTC.2014.6861005 es_ES
dc.description.references Selmi, I., Vervisch-Picois, A., Gottesman, Y., Samama, N., 2012. Optical and radio calibration of the repealite based indoor positioning system. In: Indoor Positioning and Indoor Navigation (IPIN), 2012 International Conference on. IEEE, pp. 1-8. https://doi.org/10.1109/IPIN.2012.6418906 es_ES
dc.description.references Sertthin, C., Tsuji, E., Nakagawa, M., Kuwano, S.,Watanabe, K., 2009. A switching estimated receiver position scheme for visible light based indoor positioning system. In: Wireless Pervasive Computing, 2009. ISWPC 2009. 4th International Symposium on. IEEE, pp. 1-5. https://doi.org/10.1109/ISWPC.2009.4800561 es_ES
dc.description.references Siller, M., 2016. A Fingerprinting Indoor Localization Algorithm Based Deep Learning. In: 2016 Eighth International Conference on Ubiquitous and Future Networks (ICUFN). pp. 1006-1011. es_ES
dc.description.references Suzuki, A., Iyota, T., Choi, Y., Kubota, Y., Watanabe, K., Yamane, A., 2009. Measurement accuracy on indoor positioning system using spread spectrum ultrasonic waves. In: Autonomous Robots and Agents, 2009. ICARA 2009. 4th International Conference on. IEEE, pp. 294-297. https://doi.org/10.1109/ICARA.2000.4803981 es_ES
dc.description.references Swangmuang, N., Krishnamurthy, P., 2008. An effective location fingerprint model for wireless indoor localization. Pervasive and Mobile Computing 4 (6), 836-850. URL: http://dx.doi.org/10.1016/j.pmcj.2008.04.005 https://doi.org/10.1016/j.pmcj.2008.04.005 es_ES
dc.description.references Tian, Y., Denby, B., Pierre, U., 2014. Hybrid Indoor Localization using GSM Fingerprints , Embedded Sensors and a Particle Filter. In: Wireless Communications Systems (ISWCS), 2014 11th International Symposium on. pp. 542-547. https://doi.org/10.1109/ISWCS.2014.6933413 es_ES
dc.description.references Torteeka, P., Chundi, X., 2014. Indoor positioning based on Wi-Fi Fingerprint Technique using Fuzzy K-Nearest Neighbor. Applied Sciences and Technology (IBCAST), 2014 11th International Bhurban Conference on, 461-465. https://doi.org/10.1109/IBCAST.2014.6778188 es_ES
dc.description.references Varshavsky, A., Lara, E. D., Hightower, J., Lamarca, A., Otsason, V., 2007. GSM indoor localization. Pervasive and Mobile Computing 3, 698-720. https://doi.org/10.1016/j.pmcj.2007.07.004 es_ES
dc.description.references Vervisch-Picois, A., Samama, N., 2012. First experimental performances of the repealite based indoor positioning system. In:Wireless Communication Systems (ISWCS), 2012 International Symposium on. IEEE, pp. 636-640. https://doi.org/10.1109/ISWCS.2012.6328445 es_ES
dc.description.references Vervisch-Picois, A., Selmi, I., Gottesman, Y., Samama, N., 2010. Current status of the repealite based approach: A sub-meter indoor positioning system. In: Satellite Navigation Technologies and European Workshop on GNSS Signals and Signal Processing (NAVITEC), 2010 5th ESAWorkshop on. IEEE, pp. 1-6. https://doi.org/10.1109/NAVITEC.2010.5707994 es_ES
dc.description.references Wang, X., Gao, L., Mao, S., Pandey, S., 2015. DeepFi : Deep Learning for Indoor Fingerprinting Using Channel State Information. In: Wireless Communications and Networking Conference (WCNC), 2015 IEEE. pp. 9-12. es_ES
dc.description.references Wietrzykowski, J., 2017. Low-Effort Place Recognition with WiFi Fingerprints Using Deep Learning. In: Automation 2017. ICA 2017. https://doi.org/10.1007/978-3-319-54042-957 es_ES
dc.description.references Xia, S., Liu, Y., Yuan, G., Zhu, M.,Wang, Z., 2017. Indoor Fingerprint Positioning Based on Wi-Fi : An Overview. https://doi.org/10.3390/ijgi6050135 es_ES
dc.description.references Yamaguchi, S., Mai, V. V., Thang, T. C., Pham, A. T., 2014. Design and performance evaluation of vlc indoor positioning system using optical orthogonal codes. In: Communications and Electronics (ICCE), 2014 IEEE Fifth International Conference on. IEEE, pp. 54-59. https://doi.org/10.1109/CCE.2014.6916679 es_ES
dc.description.references Yazici, A., Yayan, U., Y¨ucel, H., 2011. An ultrasonic based indoor positioning system. In: Innovations in Intelligent Systems and Applications (INISTA), 2011 International Symposium on. IEEE, pp. 585-589. https://doi.org/10.1109/INISTA.2011.5946154 es_ES
dc.description.references Zhao, J., Wang, J., 2017. WiFi Indoor Positioning Algorithm Based on Machine Learning. In: Electronics Information and Emergency Communication (ICEIEC), 2017 7th IEEE International Conference on. https://doi.org/10.1109/ICEIEC.2017.8076562 es_ES
dc.description.references Zhuang, Y., Syed, Z., Georgy, J., 2015. Autonomous smartphone based WiFi positioning system by using access points localization and crowdsourcing. Pervasive and Mobile Computing. URL: http://dx.doi.org/10.1016/j.pmcj.2015.02.001 https://doi.org/10.1016/j.pmcj.2015.02.001 es_ES
dc.description.references Zou, H., Luo, Y., Lu, X., Jiang, H., Xie, L., 2015. A Mutual Information Based Online Access Point Selection Strategy for WiFi Indoor Localization. In: Automation Science and Engineering (CASE), 2015 IEEE International Conference on. pp. 24-28. https://doi.org/10.1109/CoASE.2015.7294059 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem