- -

Metodología de diagnóstico de fallos para sistemas fotovoltaicos de conexión a red

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Metodología de diagnóstico de fallos para sistemas fotovoltaicos de conexión a red

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Núñez A., J. es_ES
dc.contributor.author Benítez P., I. es_ES
dc.contributor.author Proenza Y., R. es_ES
dc.contributor.author Vázquez S., L. es_ES
dc.contributor.author Díaz M., D. es_ES
dc.date.accessioned 2020-03-04T08:31:29Z
dc.date.available 2020-03-04T08:31:29Z
dc.date.issued 2020-01-01
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/138320
dc.description.abstract [ES] Esta investigación tiene como objetivo el diseño de una metodología de diagnóstico de fallos para contribuir al mejoramiento de los indicadores de eficiencia, mantenimiento y disponibilidad de los Sistemas Fotovoltaicos de Conexión a Red (SFVCR). Para lograr dicho objetivo, se realiza el estudio del inversor de conexión a red y del modelo matemático del generador fotovoltaico. Luego se cuantifican las pérdidas operacionales del generador fotovoltaico y se adapta el modelo matemático de éste a las condiciones reales del sistema a través de un ajuste polinomial. Un sistema real de conexión a red de potencia nominal 7.5 kWp, instalado en el Centro de Investigaciones de Energía Solar (CIES) en la provincia Santiago de Cuba, se utiliza para evaluar la metodología propuesta. Con los resultados obtenidos se valida el diseño propuesto para demostrar que éste supervisa con éxito el SFVCR. La metodología fue capaz de detectar e identificar el 100 % de los fallos simulados y los ensayos realizado es_ES
dc.description.abstract [EN] The aim of the present research work is the design of a methodology of fault diagnosis as a contribution to the improvement of indicators about efficiency, maintenance and availability of Photovoltaic Systems of Network Connection (PVSNC). The network connection inverter and the mathematical model of the Photovoltaic Generator were firstly analyzed. Afterwards, the existing operational losses of the Photovoltaic Generator were quantified, and the mathematical model was adapted to the real conditions of the System through a polynomial adjustment. A real network connection system of nominal power 7.5 kWp installed at the Research Center of Solar Energy, in the province of Santiago de Cuba, was used to assess the proposed methodology. The results obtained were validated to show that the proposed design successfully supervises the PVSNC.100% of the simulated faults were detected and identified with the designed methodology, whose usefulness was additionally shown when having a maximum rate es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Detection es_ES
dc.subject Isolation es_ES
dc.subject Diagnosis es_ES
dc.subject Identification es_ES
dc.subject Estimation and accommodation of faults es_ES
dc.subject Photovoltaic systems es_ES
dc.subject Monitoring and supervision es_ES
dc.subject Detección es_ES
dc.subject Aislamiento es_ES
dc.subject Diagnóstico es_ES
dc.subject Identificación es_ES
dc.subject Estimación y acomodación de fallos es_ES
dc.subject Sistemas fotovoltaicos es_ES
dc.subject Monitorización y supervisión es_ES
dc.title Metodología de diagnóstico de fallos para sistemas fotovoltaicos de conexión a red es_ES
dc.title.alternative Methodology of fault diagnosis for grid-connected photovoltaic systems of network connection es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/riai.2019.11449
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Núñez A., J.; Benítez P., I.; Proenza Y., R.; Vázquez S., L.; Díaz M., D. (2020). Metodología de diagnóstico de fallos para sistemas fotovoltaicos de conexión a red. Revista Iberoamericana de Automática e Informática industrial. 17(1):94-105. https://doi.org/10.4995/riai.2019.11449 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/riai.2019.11449 es_ES
dc.description.upvformatpinicio 94 es_ES
dc.description.upvformatpfin 105 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 17 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\11449 es_ES
dc.description.references Alam, M., Khan, F., Johnson, J. & Flicker, J., 2015. A comprehensive review of catastrophic faults in PV arrays: types, detection, and mitigation techniques. IEEE Journal of Photovoltaics 5(3):1-16. https://doi.org/10.1109/JPHOTOV.2015.2397599 es_ES
dc.description.references Berbesi, T. Aplicacion de técnicas robustas para detección y diagnóstico de fallos. 2012. Tesis Doctoral. Universidad de Valladolid, España. es_ES
dc.description.references Brooks, B. The bakersfield fire: a lesson in ground-fault protection. SolarPro, Issue 4.2, Feb/Mar 2011. es_ES
dc.description.references Chao, K., Ho, S. & Wang, M. Modeling and fault diagnosis of a photovoltaic system. 2008. Electric Power Systems Research 78 (1), p. 97-105. https://doi.org/10.1016/j.epsr.2006.12.012 es_ES
dc.description.references Chouder, A. & Silvestre. Automatic supervision and fault detection of PV systems based on power losses analysis. Energy Conversion and Management, Volume 51, Issue 10, October 2010, Pages 1929-1937. https://doi.org/10.1016/j.enconman.2010.02.025 es_ES
dc.description.references Chouder, A. & Silvestre, S. Analysis model of mismatch power losses in PV systems. 2009. Journal of Solar Energy Engineering, 131(2), 024504 (Apr 02, 2009) (5 pages). es_ES
dc.description.references https://doi.org/10.1115/1.3097275 es_ES
dc.description.references De Soto, W., Klein, W., Beckman, W. A. Improvement and Validation of a Model for Photovoltaic Array Performance. 2004. Solar Energy, 80(2), January 2006, Pages 78-88. es_ES
dc.description.references https://doi.org/10.1016/j.solener.2005.06.010 es_ES
dc.description.references Duffie, J. A., Beckman, W. A. Solar Engineering of Thermal Processes. Fourth Edition. 2013. Published by John Wiley & Sons, Inc., Hoboken, New Jersey. https://doi.org/10.1002/9781118671603 es_ES
dc.description.references Farhat, M., Barambones, Ó., Ramos, J., Durán, E., & Andújar, J. (2015). Diseño e Implementación de un Sistema de Control estable basado en Lógica Borrosa para optimizar el rendimiento de un sistema de Generación Fotovoltaico. Revista Iberoamericana de Automática e Informática industrial, 12(4), 476-487. https://doi.org/10.1016/j.riai.2015.07.006 es_ES
dc.description.references Firth, S. K. Raising Efficiency in Photovoltaic Systems: High Resolution Monitoring and Performance Analysis. 2006 Tesis Doctoral. Institute of Energy and Sustainable Development De Montfort University. es_ES
dc.description.references Garoudja, E., Harrou, F., Sun, Y., Kamel, K., Chouder, A., Silvestre, S. Statistical fault detection in photovoltaic systems. 2017. Solar Energy, 150(1), July 2017, Pages 485-499. es_ES
dc.description.references https://doi.org/10.1016/j.solener.2017.04.043 es_ES
dc.description.references González, G. N., De Angelo, C. H., Forchetti, D. G., Aligia, D. A., 2018. Detection and Isolation of Faults on the Rotor Side Converter of Doubly Fed Induction Generators. Revista Iberoamericana de Automática e Informática Industrial,15(3), 297-308. ISSN: 1697-7912, https://doi.org/10.4995/riai.2017.9042 es_ES
dc.description.references Grimaldo Guerrero, J. W., Mendoza Becerra, M. A., Reyes Calle, W. P., 2017. Modelo para pronosticar la demanda de energía eléctrica utilizando los producto interno brutos sectoriales: Caso de Colombia. Revista Espacios Vol. 38 (22), 38. es_ES
dc.description.references Guerrero, J. W. G., Toscano, A. D. R., Pacheco, L. V., Tovar, J. O., 2018. Analysis of the Energetic and Productive Effects Derived by the Installation of a Conveyor Belt in the Metal-mechanic Industry. International Journal of Energy Economics and Policy, 8(6), 196-201. https://doi.org/10.32479/ijeep.7066 es_ES
dc.description.references Houssein, N. Héraud, I. Souleiman and G. Pellet, "Monitoring and fault diagnosis of photovoltaic panels," 2010 IEEE International Energy Conference, Manama, 2010, pp. 389-394. https://doi.org/10.1109/ENERGYCON.2010.5771711 es_ES
dc.description.references Lorenzo, E., Martínez F., Muñoz, J., Narvarte, L. Predicción y ensayo de la producción de la energía FV conectada a la red. Era solar: Energías renovables, ISSN 0212-4157, Nº. 139, 2007, págs. 22-31 es_ES
dc.description.references Mekki, H., Mellit, A., Salhi & H.H. Artificial neural network-based modelling and fault detection of partial shaded photovoltaic modules. 2016. Simulation Modelling Practice and Theory, vol 67, p. 1-13. https://doi.org/10.1016/j.simpat.2016.05.005 es_ES
dc.description.references Meyer. E. L., Van Dyk, E. E. Assessing the reliability and degradation of photovoltaic module performance parameters, in IEEE Transactions on Reliability, vol. 53, no. 1, pp. 83-92, March 2004. https://doi.org/10.1109/TR.2004.824831 es_ES
dc.description.references Mikati, M., Santos, M., Armenta, C., 2013. Electric grid dependence on the configuration of a small-scale wind and solar power hybrid system. Renewable Energy, 57, 587-593. https://doi.org/10.1016/j.renene.2013.02.018 es_ES
dc.description.references Montgomery, D., 2009. Introduction to Statistical Quality Control. Sixth Edition 978-0-470-16992-6 Printed in the United States of America. es_ES
dc.description.references Munoz, M., Alonso-García, M., Vela, N. & Chenlo, F., 2011. Early degradation of silicon pv modules and guaranty conditions. 2011. Solar Energy 85(9):2264-2274. https://doi.org/10.1016/j.solener.2011.06.011 es_ES
dc.description.references Real Calvo, R., Moreno Muñoz, A., Pallares López, V., González Redondo, M., Moreno García, I., & Palacios García, E. (2017). Sistema Electrónico Inteligente para el Control de la Interconexión entre Equipamiento de Generación Distribuida y la Red Eléctrica. Revista Iberoamericana de Automática e Informática industrial, 14(1), 56-69. https://doi.org/10.1016/j.riai.2016.11.002 es_ES
dc.description.references Romera Cabrerizo, J. A., Santos, M., 2017. ParaTrough: Modelica-based Simulation Library for Solar Thermal Plants. Revista Iberoamericana de Automática e Informática Industrial, 14(4):412-423. https://doi.org/10.1016/j.riai.2017.06.005 es_ES
dc.description.references Rubio, F. R., Navas, S. J., Ollero, P., Lemos, J. M., Ortega, M. G., 2018. Optimal Control Applied to Distributed Solar Collector Fields. Revista Iberoamericana de Automática e Informática Industrial, 15(3), 327-338. https://doi.org/10.4995/riai.2018.8944 es_ES
dc.description.references Sagastume Gutiérrez, A., Cabello Eras, J.J., Hens, L,. 2017. The Biomass Based Electricity Generation Potential of the Province of Cienfuegos, Cuba. Waste Biomass Valor. 8(6), 2075-2085. https://doi.org/10.1007/s12649-016-9687-x es_ES
dc.description.references Sagastume Gutiérrez, A., Cabello Eras, J.J., Huisinghc, D., Vandecasteeled, C., Hense, L., 2018. The current potential of low-carbon economy and biomass-based electricity in Cuba. The case of sugarcane, energy cane and marabu (Dichrostachys cinerea) as biomass sources. Journal of Cleaner Production. 17(2), Pages 716-723. https://doi.org/10.1016/j.jclepro.2017.11.209 es_ES
dc.description.references Stettler, S., Toggweiler, P., Wiemken, E., Heidenreich, W., Keizer, A.C., Sark, W.G., Feige, S., Schneider, M., Heilscher, G., É., Lorenz, R., Drews, A., Heinemann, D., 2005. Failure Detection Routine for Grid Connected Pv Systems as Part of the Pvsat2 Project. 20th European Photovoltaic Solar Energy Conference and Exhibition. es_ES
dc.description.references Tian, H., Mancilla-David, F., Ellis, K., Muljadi, E., & Jenkins, P. Detailed Performance Model for Photovoltaic Systems: Preprint. United States. National Renewable Energy Laboratory, 2012 - 56 páginas. es_ES
dc.description.references Vergura, S., Acciani, G., Amoruso, V., Patrono, G., 2008. Inferential statistics for monitoring and fault forecasting of pv plants. In Industrial Electronics IEEE International Symposium on, p. 2414-2419. https://doi.org/10.1109/ISIE.2008.4677264 es_ES
dc.description.references Vergura, S., Acciani, G., Amoruso, V., Patrono, G., Vacca, F. 2009. Descriptive and inferential statistics for supervising and monitoring the operation of pv plants. Industrial Electronics, IEEE Transactions on Energy Conversion, p. 4456-4464. https://doi.org/10.1109/TIE.2008.927404 es_ES
dc.description.references Zhao, Y., 2010. Fault analysis in solar photovoltaic arrays. Master's thesis, Northeastern University. Boston, Massachusetts. http://hdl.handle.net/2047/d20003009 es_ES
dc.description.references Zhao, Y., Ball, R., Mosesian, de Palma, J., Lehman, B. 2014. Graph-based semi-supervised learning for fault detection and classification in solar photovoltaic arrays. In IEEE Transactions on Power Electronics, vol. 30, no. 5, pp. 2848-2858, May 2015. https://doi.org/10.1109/TPEL.2014.2364203 es_ES
dc.description.references Zhao, Y., Lehman, B., Ball, R., Mosesian, J., de Palma, J. 2013 . Outlier detection rules for fault detection in solar photovoltaic arrays. In Applied Power Electronics Conference and Exposition (APEC), Twenty-Eighth Annual IEEE, p. 2913-2920. https://doi.org/10.1109/APEC.2013.6520712 es_ES
dc.description.references Zhao, Y, Yang, L., Lehman, B., de Palma, J., Mosesian, J. 2012. Decision tree-based fault detection and classification in solar photovoltaic arrays. Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Orlando, FL, pp. 93-99. https://doi.org/10.1109/APEC.2012.6165800 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem