- -

Maniobras cooperativas aplicadas a vehículos automatizados en entornos virtuales y reales

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Maniobras cooperativas aplicadas a vehículos automatizados en entornos virtuales y reales

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Hidalgo, C. es_ES
dc.contributor.author Marcano, M. es_ES
dc.contributor.author Fernández, G. es_ES
dc.contributor.author Pérez, J. M es_ES
dc.date.accessioned 2020-03-04T10:15:43Z
dc.date.available 2020-03-04T10:15:43Z
dc.date.issued 2020-01-01
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/138324
dc.description.abstract [ES] En los últimos años los Sistemas Inteligentes de Transporte, ITS (del inglés, Intelligent Transportation System) se han convertido en una realidad dentro de la sociedad, aportando soluciones y beneficios a la conducción. Con el fin de contribuir a su desarrollo, el presente trabajo describe un marco cooperativo híbrido capaz de validar maniobras entre múltiples vehículos (virtuales y reales), con el fin de disminuir los costos, tiempos y riesgos asociados al ajuste de los controladores. Para su validación se presentan 3 casos de estudios. El primero consiste en utilizar dos vehículos virtuales para realizar un Control de Crucero Adaptativo, ACC (del inglés, Adaptive Cruise Control) con seguidor de trayectoria. El segundo, emplea un coche real como seguidor y un coche virtual como líder para la maniobra de Stop & Go. Finalmente, se utilizan dos vehículos reales para el ACC. Los algoritmos de seguimiento empleados para las maniobras cooperativas están basados en controladores de lógi es_ES
dc.description.abstract [EN] In recent years, Intelligent Transportation Systems (ITS) have become a reality within society, by providing benefits and solutions to the conduction. With the aim of contributing with the development of the ITS, the present work describes a hybrid cooperative framework for the validation of maneuvers between multiple vehicles (virtual and real), in order to reduce cost, time and risks associated with the controllers adjustment. For its validation three case of studies are presented. The first one consists of using two virtual vehicles to perform an Adaptive Cruise Control (ACC) with trajectory tracker. The second one, in using a real car as the follower and a virtual vehicle as the lider to perform a Stop & Go. And finally, two real cars are used to carry out an ACC. The tracker algorithms employed for the cooperative maneuvers are based in fuzzy logic controllers. The results show the versatility of the proposed framework, which was able to correctly execute the maneuvers in each es_ES
dc.description.sponsorship Proyecto SerIoT H2020 (Con número de concesiòn 780139) es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Cooperative Maneuvers es_ES
dc.subject Hybrid Cooperative Framework es_ES
dc.subject ACC es_ES
dc.subject Stop & Go es_ES
dc.subject ITS es_ES
dc.subject Fuzzy Logic es_ES
dc.subject Maniobras Cooperativas es_ES
dc.subject Marco Cooperativo Híbrido es_ES
dc.subject Lógica Borrosa es_ES
dc.title Maniobras cooperativas aplicadas a vehículos automatizados en entornos virtuales y reales es_ES
dc.title.alternative Cooperative maneuvers applied to automated vehicles in real and virtual environments es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/riai.2019.11155
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/780139/EU/Secure and Safe Internet of Things/
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Hidalgo, C.; Marcano, M.; Fernández, G.; Pérez, JM. (2020). Maniobras cooperativas aplicadas a vehículos automatizados en entornos virtuales y reales. Revista Iberoamericana de Automática e Informática industrial. 17(1):56-65. https://doi.org/10.4995/riai.2019.11155 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/riai.2019.11155 es_ES
dc.description.upvformatpinicio 56 es_ES
dc.description.upvformatpfin 65 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 17 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\11155 es_ES
dc.contributor.funder European Commission
dc.description.references Cuadrado, J., Vilela, D., Iglesias, I., Martín, A., Peña, A., 2013. A multibody model to assess the effect of automotive motor in-wheel configuration on vehicle stability and comfort. ECCOMAS Multibody Dynamics. es_ES
dc.description.references Da Cunha, F. D., Boukerche, A., Villas, L., Viana, A. C., Loureiro, A. A., 2014. Data communication in vanets: a survey, challenges and applications. Ph.D. thesis, INRIA Saclay; INRIA. https://doi.org/10.1016/j.adhoc.2016.02.017 es_ES
dc.description.references Driankov, D., Hellendoorn, H., Reinfrank, M., 1996. Introduction. In: An Introduction to Fuzzy Control. Springer, pp. 1-36. https://doi.org/10.1007/978-3-662-03284-8 es_ES
dc.description.references During, M., Lemmer, K., 2016. Cooperative maneuver planning for cooperative driving. IEEE Intelligent Transportation Systems Magazine 8 (3), 8-22. https://doi.org/10.1109/MITS.2016.2549997 es_ES
dc.description.references Española, D. G. D. T., Jul. 2015. Seguridad vial. http://www.dgt.es/es/seguridad-vial/. es_ES
dc.description.references Fernandez, S., Ito, T., nov 2016. Driver classification for intelligent transportation systems using fuzzy logic. In: 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC). IEEE. https://doi.org/10.1109/ITSC.2016.7795711 es_ES
dc.description.references Festag, A., 2014. Cooperative intelligent transport systems standards in europe. IEEE communications magazine 52 (12), 166-172. https://doi.org/10.1109/MCOM.2014.6979970 es_ES
dc.description.references González, D., Pérez, J., Milanés, V., Nashashibi, F., 2016. A review of motion planning techniques for automated vehicles. IEEE Transactions on Intelligent Transportation Systems 17 (4), 1135-1145. https://doi.org/10.1109/TITS.2015.2498841 es_ES
dc.description.references Iancu, I., 2012. A mamdani type fuzzy logic controller. In: Fuzzy Logic-Controls, Concepts, Theories and Applications. InTech. https://doi.org/10.5772/36321 es_ES
dc.description.references Jena, K. S., Joseph, A. V., Senapati, P. R. R., 2016. Fuzzy logic based approach for controlling of a vehicle in its longitudinal motion. Middle-East Journal of Scientific Research 24 (S1), 346-352. https://doi.org/10.1017/S1047198700014406 es_ES
dc.description.references Lattarulo, R., González, L., Martí, E., Matute, J., Marcano, M., Pérez, J., 2018. Urban motion planning framework based on n-bézier curves considering comfort and safety. Journal of Advanced Transportation 2018. https://doi.org/10.1155/2018/6060924 es_ES
dc.description.references Lattarulo, R., Marcano, M., Pérez, J., 2017a. Overtaking maneuver for automated driving using virtual environments. In: International Conference on Computer Aided Systems Theory. Springer, pp. 446-453. https://doi.org/10.1007/978-3-319-74727-9 es_ES
dc.description.references Lattarulo, R., Pérez, J., Dendaluce, M., 2017b. A complete framework for developing and testing automated driving controllers. IFAC-PapersOnLine 50 (1), 258-263. https://doi.org/10.1016/j.ifacol.2017.08.043 es_ES
dc.description.references Lin, W.-Y., Li, M.-W., Lan, K.-C., Hsu, C.-H., 2010. A comparison of 802.11 a and 802.11 p for v-to-i communication: A measurement study. In: International Conference on Heterogeneous Networking for Quality, Reliability, Security and Robustness. Springer, pp. 559-570. https://doi.org/10.1007/978-3-642-29222-4 es_ES
dc.description.references Marcano, M., Matute, J. A., Lattarulo, R., Martí, E., Pérez, J., 2018. Low speed longitudinal control algorithms for automated vehicles in simulation and real platforms. Complexity 2018. https://doi.org/10.1155/2018/7615123 es_ES
dc.description.references Marzbanrad, J., Moghaddam, T.-z., et al., 2015. Prediction of drivers accelerating behavior in the stop and go maneuvers using genetic algorithm-artificial neural network hybrid intelligence. International Journal of Automotive Engineering 5 (2), 986-998. es_ES
dc.description.references Milanés, V., Villagrá, J., Godoy, J., González, C., 2012. Comparing fuzzy and intelligent pi controllers in stop-and-go manoeuvres. IEEE Transactions on Control Systems Technology 20 (3), 770-778. https://doi.org/10.1109/TCST.2011.2135859 es_ES
dc.description.references Milanes, V., Villagra, J., Godoy, J., Simo, J., Pérez, J., Onieva, E., 2012. An intelligent v2i-based traffic management system. IEEE Transactions on Intelligent Transportation Systems 13 (1), 49-58. https://doi.org/10.1109/TITS.2011.2178839 es_ES
dc.description.references Morcillo, C. G., 2011. Lógica difusa. una introducción práctica. Universidad de Castilla-La Mancha. es_ES
dc.description.references Pérez, J., Milanés, V., Alonso, J., Onieva, E., De Pedro, T., 2010. Adelantamiento con vehículos autónomos en carreteras de doble sentido. Revista Iberoamericana de Automática e Informática Industrial RIAI 7 (3), 25-33. https://doi.org/10.1016/S1697-7912(10)70039-X es_ES
dc.description.references Rastelli, J. P., Peñas, M. S., 2015. Fuzzy logic steering control of autonomous vehicles inside roundabouts. Applied Soft Computing 35, 662-669. https://doi.org/10.1016/j.asoc.2015.06.030 es_ES
dc.description.references Rizvi, R., Kalra, S., Gosalia, C., Rahnamayan, S., 2014. Fuzzy adaptive cruise control system with speed sign detection capability. In: Fuzzy Systems (FUZZ-IEEE), 2014 IEEE International Conference on. IEEE, pp. 968-976. https://doi.org/10.1109/FUZZ-IEEE.2014.6891748 es_ES
dc.description.references Schmied, R., Moser, D.,Waschl, H., del Re, L., 2016. Scenario model predictive control for robust adaptive cruise control in multi-vehicle traffic situations. In: Intelligent Vehicles Symposium (IV), 2016 IEEE. IEEE, pp. 802-807. https://doi.org/10.1109/IVS.2016.7535479 es_ES
dc.description.references Sriranjan, S., Lattarulo, R., Pérez-Rastelli, J., Ibanez-Guzman, J., Pena, A., 2017. Lateral controllers using neuro-fuzzy systems for automated vehicles: A comparative study. es_ES
dc.description.references Sugeno, M., 1985. An introductory survey of fuzzy control. Information sciences 36 (1-2), 59-83. https://doi.org/10.1016/0020-0255(85)90026-X es_ES
dc.description.references Sugeno, M., Murakami, K., 1984. Fuzzy parking control of model car. In: Decision and Control, 1984. The 23rd IEEE Conference on. Vol. 23. IEEE, pp. 902-903. https://doi.org/10.1109/CDC.1984.272144 es_ES
dc.description.references Villagrá, J., Milanés, V., Pérez, J., González, C., 2010. Model-free control techniques for stop & go systems. In: Intelligent Transportation Systems (ITSC), 2010 13th International IEEE Conference on. IEEE, pp. 1899-1904. https://doi.org/10.1109/ITSC.2010.5625228 es_ES
dc.description.references Wang, X., Fu, M., Ma, H., Yang, Y., 2015. Lateral control of autonomous vehicles based on fuzzy logic. Control Engineering Practice 34, 1-17. https://doi.org/10.1016/j.conengprac.2014.09.015 es_ES
dc.description.references Zohdy, I. H., Kamalanathsharma, R. K., Rakha, H., 2012. Intersection management for autonomous vehicles using icacc. In: Intelligent Transportation Systems (ITSC), 2012 15th International IEEE Conference on. IEEE, pp. 1109-1114. https://doi.org/10.1109/ITSC.2012.6338827 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem