- -

Detección de anomalías basada en técnicas inteligentes de una planta de obtención de material bicomponente empleado en la fabricación de palas de aerogenerador

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Detección de anomalías basada en técnicas inteligentes de una planta de obtención de material bicomponente empleado en la fabricación de palas de aerogenerador

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Jove, E. es_ES
dc.contributor.author Casteleiro-Roca, J. es_ES
dc.contributor.author Quintián, H. es_ES
dc.contributor.author Méndez-Pérez, J. A. es_ES
dc.contributor.author Calvo-Rolle, J. L. es_ES
dc.date.accessioned 2020-03-04T12:49:31Z
dc.date.available 2020-03-04T12:49:31Z
dc.date.issued 2020-01-01
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/138327
dc.description.abstract [ES] Los avances tecnológicos en general, y en el ámbito de la industria en particular, conllevan el desarrollo y optimización de las actividades que en ella tienen lugar. Para alcanzar este objetivo, resulta de vital importancia detectar cualquier tipo de anomalía en su fase más incipiente, contribuyendo, entre otros, al ahorro energético y económico, y a una reducción del impacto ambiental. En un contexto en el que se fomenta la reducción de emisión de gases contaminantes, las energías alternativas, especialmente la energía eólica, juegan un papel crucial. En la fabricación de las palas de aerogenerador se recurre comúnmente a materiales de tipo bicomponente, obtenidos a través del mezclado de dos substancias primarias. En la presente investigación se evalúan distintas técnicas inteligentes de clasificación one-class para detectar anomalías en un sistema de mezclado para la obtención de materiales bicomponente empleados en la elaboración de palas de aerogenerador. Para lograr los modelos es_ES
dc.description.abstract [EN] Technological advances, especially in the industrial field, have led to the development and optimization of the activities that takes place on it. To achieve this goal, an early detection of any kind of anomaly is very important. This can contribute to energy and economic savings and an environmental impact reduction. In a context where the reduction of pollution gasses emission is promoted, the use of alternative energies, specially the wind energy, plays a key role. The wind generator blades are usually manufactured from bicomponent material, obtained from the mixture of two dierent primary components. The present research assesses dierent one-class intelligent techniques to perform anomaly detection on a bicomponent mixing system used on the wind generator manufacturing. To perform the anomaly detection, the intelligent models were obtained from real dataset recorded during the right operation of a bicomponent mixing plant. The classifiers for each technique were validated using art es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Renewable energy systems es_ES
dc.subject Windmills es_ES
dc.subject Fault detection es_ES
dc.subject System diagnosis es_ES
dc.subject Neural networks es_ES
dc.subject Sistemas de energías renovables es_ES
dc.subject Aerogeneradores es_ES
dc.subject Detección de anomalías es_ES
dc.subject Diagnóstico de sistemas es_ES
dc.subject Redes neuronales es_ES
dc.title Detección de anomalías basada en técnicas inteligentes de una planta de obtención de material bicomponente empleado en la fabricación de palas de aerogenerador es_ES
dc.title.alternative Anomaly detection based on intelligent techniques over a bicomponent production plant used on wind generator blades manufacturing es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/riai.2019.11055
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Jove, E.; Casteleiro-Roca, J.; Quintián, H.; Méndez-Pérez, JA.; Calvo-Rolle, JL. (2020). Detección de anomalías basada en técnicas inteligentes de una planta de obtención de material bicomponente empleado en la fabricación de palas de aerogenerador. Revista Iberoamericana de Automática e Informática industrial. 17(1):84-93. https://doi.org/10.4995/riai.2019.11055 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/riai.2019.11055 es_ES
dc.description.upvformatpinicio 84 es_ES
dc.description.upvformatpfin 93 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 17 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\11055 es_ES
dc.description.references Bradley, A. P., 1997. The use of the area under the roc curve in the evaluation of machine learning algorithms. Pattern Recognition 30 (7), 1145 - 1159. https://doi.org/10.1016/S0031-3203(96)00142-2 es_ES
dc.description.references Casale, P., Pujol, O., Radeva, P., 2011. Approximate convex hulls family for one-class classification. In: Sansone, C., Kittler, J., Roli, F. (Eds.), Multiple Classifier Systems. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 106-115. https://doi.org/10.1007/978-3-642-21557-5_13 es_ES
dc.description.references Casale, P., Pujol, O., Radeva, P., 2014. Approximate polytope ensemble for oneclass classification. Pattern Recognition 47 (2), 854 - 864. https://doi.org/10.1016/j.patcog.2013.08.007 es_ES
dc.description.references Chandola, V., Banerjee, A., Kumar, V., 2009. Anomaly detection: A survey. ACM computing surveys (CSUR) 41 (3), 15. https://doi.org/10.1145/1541880.1541882 es_ES
dc.description.references Chen, Y., Zhou, X. S., Huang, T. S., 2001. One-class svm for learning in image retrieval. In: Image Processing, 2001. Proceedings. 2001 International Conference on. Vol. 1. IEEE, pp. 34-37. es_ES
dc.description.references Chiang, L. H., Russell, E. L., Braatz, R. D., 2000. Fault detection and diagnosis in industrial systems. Springer Science & Business Media. es_ES
dc.description.references de la Portilla, M. P., Piñeiro, A. L., Sánchez, J. A. S., Herrera, R. M., 2017. Modelado dinámico y control de un dispositivo sumergido provisto de actuadores hidrostáticos. Revista Iberoamericana de Automtica e Informática industrial 15 (1), 12-23. https://doi.org/10.4995/riai.2017.8824 es_ES
dc.description.references Fan, H.,Wong, C., Yuen, M.-F., April 2006. Prediction of material properties of epoxy materials using molecular dynamic simulation. In: Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems, 2006. EuroSime 2006. 7th International Conference on. pp. 1-4. https://doi.org/10.1109/ESIME.2006.1644033 es_ES
dc.description.references Fernández-Francos, D., Fontenla-Romero, O., Alonso-Betanzos, A., 2018. One-class convex hull-based algorithm for classification in distributed environments. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 1-11. https://doi.org/10.1109/TSMC.2017.2771341 es_ES
dc.description.references González, G., Angelo, C. D., Forchetti, D., Aligia, D., 2018. Diagnósico de fallas en el convertidor del rotor en generadores de inducción con rotor bobinado. Revista Iberoamericana de Automática e Informática industrial 15 (3), 297-308. https://doi.org/10.4995/riai.2017.9042 es_ES
dc.description.references Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y., 2016. Deep learning. Vol. 1. MIT press Cambridge. es_ES
dc.description.references Heller, K. A., Svore, K. M., Keromytis, A. D., Stolfo, S. J., 2003. One class support vector machines for detecting anomalous windows registry accesses. In: Proc. of the workshop on Data Mining for Computer Security. Vol. 9. es_ES
dc.description.references Hobday, M., 1998. Product complexity, innovation and industrial organisation. Research policy 26 (6), 689-710. https://doi.org/10.1016/S0048-7333(97)00044-9 es_ES
dc.description.references Hodge, V., Austin, J., 2004. A survey of outlier detection methodologies. Artificial intelligence review 22 (2), 85-126. https://doi.org/10.1023/B:AIRE.0000045502.10941.a9 es_ES
dc.description.references Hwang, B., Cho, S., 1999. Characteristics of auto-associative mlp as a novelty detector. In: Neural Networks, 1999. IJCNN'99. International Joint Conference on. Vol. 5. IEEE, pp. 3086-3091. es_ES
dc.description.references Jove, E., Casteleiro-Roca, J.-L., Quintián, H., Méndez-Pérez, J. A., Calvo-Rolle, J. L., 2018. A new approach for system malfunctioning over an industrial system control loop based on unsupervised techniques. In: Graña, M., López-Guede, J. M., Etxaniz, O., Herrero, Á., Sáez, J. A., Quintián, H., Corchado, E. (Eds.), International Joint Conference SOCO'18-CISIS'18- ICEUTE'18. Springer International Publishing, Cham, pp. 415-425. https://doi.org/10.1007/978-3-319-94120-2_40 es_ES
dc.description.references Krstajic, D., Buturovic, L. J., Leahy, D. E., Thomas, S., Mar 2014. Crossvalidation pitfalls when selecting and assessing regression and classification models. Journal of Cheminformatics 6 (1), 10. URL: https://doi.org/10.1186/1758-2946-6-10 https://doi.org/10.1186/1758-2946-6-10 es_ES
dc.description.references Li, K.-L., Huang, H.-K., Tian, S.-F., Xu, W., 2003. Improving one-class svm for anomaly detection. In: Machine Learning and Cybernetics, 2003 International Conference on. Vol. 5. IEEE, pp. 3077-3081. es_ES
dc.description.references Miljkovic, D., 2011. Fault detection methods: A literature survey. In: MIPRO, 2011 proceedings of the 34th international convention. IEEE, pp. 750-755. es_ES
dc.description.references Sakurada, M., Yairi, T., 2014. Anomaly detection using autoencoders with nonlinear dimensionality reduction. In: Proceedings of the MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis. ACM, p. 4 https://doi.org/10.1145/2689746.2689747 es_ES
dc.description.references Schölkopf, B., Platt, J. C., Shawe-Taylor, J., Smola, A. J., Williamson, R. C., 2001. Estimating the support of a high-dimensional distribution. Neural computation 13 (7), 1443-1471. https://doi.org/10.1162/089976601750264965 es_ES
dc.description.references Schwartz, J., 1994. Air pollution and daily mortality: A review and meta analysis. Environmental Research 64 (1), 36 - 52. https://doi.org/10.1006/enrs.1994.1005 es_ES
dc.description.references Shalabi, L. A., Shaaban, Z., May 2006. Normalization as a preprocessing engine for data mining and the approach of preference matrix. In: 2006 International Conference on Dependability of Computer Systems. pp. 207-214. https://doi.org/10.1109/DEPCOS-RELCOMEX.2006.38 es_ES
dc.description.references Tax, D., Jan 2018. Ddtools, the data description toolbox for matlab. Version 2.1.3. es_ES
dc.description.references Tax, D. M. J., 2001. One-class classification: concept-learning in the absence of counter-examples [ph. d. thesis]. Delft University of Technology. es_ES
dc.description.references Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.-A., 2010. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. Journal of Machine Learning Research 11 (Dec), 3371-3408. es_ES
dc.description.references Wei, X., Huang, G., Li, Y., Aug 2007. Mahalanobis ellipsoidal learning machine for one class classification. In: 2007 International Conference on Machine Learning and Cybernetics. Vol. 6. pp. 3528-3533. https://doi.org/10.1109/ICMLC.2007.4370758 es_ES
dc.description.references Westerhuis, J. A., Gurden, S. P., Smilde, A. K., 2000. Generalized contribution plots in multivariate statistical process monitoring. Chemometrics and intelligent laboratory systems 51 (1), 95-114. https://doi.org/10.1016/S0169-7439(00)00062-9 es_ES
dc.description.references Wu, J., Zhang, X., 2001. A pca classifier and its application in vehicle detection. In: IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No. 01CH37222). Vol. 1. IEEE, pp. 600-604. es_ES
dc.description.references Young, W.-B., Wu, W.-H., Aug 2011. Optimization of the skin thickness distribution in the composite wind turbine blade. In: Fluid Power and Mechatronics (FPM), 2011 International Conference on. pp. 62-66. https://doi.org/10.1109/FPM.2011.6045730 es_ES
dc.description.references Zeng, Z., Wang, J., 2010. Advances in neural network research and applications, 1st Edition. Springer Publishing Company, Incorporated. https://doi.org/10.1007/978-3-642-12990-2 es_ES
dc.description.references Zuo, Y., Liu, H., June 2012. Evaluation on comprehensive benefit of wind power generation and utilization of wind energy. In: Software Engineering and Service Science (ICSESS), 2012 IEEE 3rd International Conference on. pp. 635-638. https://doi.org/10.1109/ICSESS.2012.6269547 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem