Mostrar el registro sencillo del ítem
dc.contributor.author | Fuertes, Rubén | es_ES |
dc.contributor.author | Albarracín Gordo, Lluís | es_ES |
dc.date.accessioned | 2020-03-06T13:09:22Z | |
dc.date.available | 2020-03-06T13:09:22Z | |
dc.date.issued | 2019-07-31 | |
dc.identifier.uri | http://hdl.handle.net/10251/138462 | |
dc.description.abstract | [EN] This article presents exploratory research to characterize the teacher’s knowledge needed to guide a modeling activity in Primary Education. A Fermi problem has been chosen as modeling activity and the theoretical framework on teacher knowledge used is the Rowland’s Knowledge Quartet. The analysis of an expert teacher’s interventions during the class activity allows us to identify the key knowledge that the teacher sets in motion. Among them we highlight the cognitive activations of students during the phases of developing a plan and executing it. | es_ES |
dc.description.abstract | [ES] En este artículo se presenta una investigación de tipo exploratorio para caracterizar el conocimiento del profesor necesario para guiar una actividad de modelización en Educación Primaria. Como actividad se ha elegido un problema de Fermi y el marco teórico sobre conocimiento del profesor utilizado es el Knowledge Quartet de Rowland. El análisis de las intervenciones de una maestra experta durante una actividad nos permite identificar los conocimientos clave que pone en marcha la maestra. Entre ellos destacamos las activaciones cognitivas de los alumnos durante las fases de elaborar un plan y ejecutarlo. | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Modelling in Science Education and Learning | es_ES |
dc.rights | Reconocimiento - No comercial (by-nc) | es_ES |
dc.subject | Knowledge for teaching | es_ES |
dc.subject | Mathematical modeling | es_ES |
dc.subject | Fermi problems | es_ES |
dc.subject | Primary School | es_ES |
dc.subject | Conocimiento del profesor | es_ES |
dc.subject | Modelización matemática | es_ES |
dc.subject | Problemas de Fermi | es_ES |
dc.subject | Educación Primaria | es_ES |
dc.title | Un estudio exploratorio sobre el conocimiento del maestro para guiar actividades de modelización matemática en Educación Primaria | es_ES |
dc.title.alternative | An exploratory study of teacher knowledge to guide mathematical modeling activities in Primary Education | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/msel.2019.10977 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Fuertes, R.; Albarracín Gordo, L. (2019). Un estudio exploratorio sobre el conocimiento del maestro para guiar actividades de modelización matemática en Educación Primaria. Modelling in Science Education and Learning. 12(2):77-98. https://doi.org/10.4995/msel.2019.10977 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/msel.2019.10977 | es_ES |
dc.description.upvformatpinicio | 77 | es_ES |
dc.description.upvformatpfin | 98 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 12 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.eissn | 1988-3145 | |
dc.relation.pasarela | OJS\10977 | es_ES |
dc.description.references | Albarracíın, L. (2017). Los problemas de fermi como actividades para introducir la modelización: qué sabemosy qué más deberíamos saber. Modelling in Science Education and Learning,10(2), 117-136. https://doi.org/10.4995/msel.2017.7707 | es_ES |
dc.description.references | Albarracín, L., & Gorgorió, N. (2014). Devising a plan to solve fermi problems involving large numbers.Educational Studies in Mathematics,86(1), 79-96. https://doi.org/10.1007/s10649-013-9528-9 | es_ES |
dc.description.references | Albarracín, L., & Gorgorió, N. (2018). Students estimating large quantities: From simple strategies to thepopulation density model.EURASIA Journal of Mathematics, Science and Technology Education,14,10. https://doi.org/10.29333/ejmste/92285 | es_ES |
dc.description.references | Albarracín, L., Lorente, C., Lopera, A., Pérez, H., & Gorgorió, N. (2015). Problemas de estimación de grandes cantidades en las aulas de educación primaria. Epsilon,32(89), 19-33. | es_ES |
dc.description.references | Ärlebäck, J. B. (2009). On the use of realistic fermi problems for introducing mathematical modelling in school.The Mathematics Enthusiast,6(3), 331-364. | es_ES |
dc.description.references | ÄrlebÄck, J. B. (2011). Exploring the solving process of groups solving realistic fermi problem from theperspective of the anthropological theory of didactics. In Proceedings of the seventh congress of the european society for research in mathematics education(pp. 1010-1019). | es_ES |
dc.description.references | Ball, D., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of teacher education,59(5), 389-407. https://doi.org/10.1177/0022487108324554 | es_ES |
dc.description.references | Blum, W. (2002). Icmi study 14: Applications and modelling in mathematics education-discussion document.Educational studies in mathematics,51(1-2), 149-171. https://doi.org/10.1023/A:1022435827400 | es_ES |
dc.description.references | Blum, W., & Leiss, D. (2007). How do students and teachers deal with modelling problems. In Mathematical modelling (ictma 12): Education, engineering and economics(pp. 222-231). https://doi.org/10.1533/9780857099419.5.221 | es_ES |
dc.description.references | Boukafri, K., Civil, M., & Planas, N. (2018). A teacher's use of revoicing in mathematical discussions. In Language and communication in mathematics education(pp. 157-169). Springer. https://doi.org/10.1007/978-3-319-75055-2_12 | es_ES |
dc.description.references | Carrillo, J., Climent, N., Contreras, L., & Muñoz-Catalán, M. (2013). Mathematics teacher specialized knowl-edge.Proceedings of the 8th CERME. Turkey. | es_ES |
dc.description.references | Czocher, J. A. (2016). Introducing modeling transition diagrams as a tool to connect mathematical modeling to mathematical thinking. Mathematical Thinking and Learning,18(2), 77-106. https://doi.org/10.1080/10986065.2016.1148530 | es_ES |
dc.description.references | Diago, P., Ortega, M., Puig, L., & Ferrando, I. (2016). Diseño e implementación de tareas de modelización con ipad©: un enfoque dual. Modelling in Science Education and Learning,9(1), 35-56. https://doi.org/10.4995/msel.2016.4427 | es_ES |
dc.description.references | Doerr, H. M., & English, L. D. (2003). A modeling perspective on students' mathematical reasoning about data. Journal for research in mathematics education, 110-136. https://doi.org/10.2307/30034902 | es_ES |
dc.description.references | Efthimiou, C. J., & Llewellyn, R. A. (2007). Cinema, fermi problems and general education.Physics education,42(3), 253. https://doi.org/10.1088/0031-9120/42/3/003 | es_ES |
dc.description.references | Fennema, E., & Franke, M. L. (1992).Teachers' knowledge and its impact.Macmillan Publishing Co, Inc. | es_ES |
dc.description.references | Ferrando, I., Albarracín, L., Gallart, C., García-Raffi, L. M., & Gorgorió, N. (2017). Análisis de los modelos matemáticos producidos durante la resolución de problemas de fermi.Boletim de Educaçao Matemática,31(57), 220-242. https://doi.org/10.1590/1980-4415v31n57a11 | es_ES |
dc.description.references | Ferrer, M., Fortuny, J. M., & Morera, L. (2014). Efectos de la actuaci ́on docente en la generaci ́on de oportunidades de aprendizaje matemático.Enseñanza de las ciencias: revista de investigación y experiencias didácticas,32(3), 385-405. https://doi.org/10.5565/rev/ensciencias.1231 | es_ES |
dc.description.references | Gallart, C., Ferrando, I., García-Raffi, L. M., Albarracín, L., & Gorgorió, N. (2017). Design and implementationof a tool for analysing student products when they solve fermi problems. In Mathematical modelling andapplications(pp. 265-275). Springer. https://doi.org/10.1007/978-3-319-62968-1_23 | es_ES |
dc.description.references | Lesh, R., & Harel, G. (2003). Problem solving, modeling, and local conceptual development.Mathematicalthinking and learning,5(2-3), 157-189. https://doi.org/10.1080/10986065.2003.9679998 | es_ES |
dc.description.references | Peter-Koop, A. (2009). Teaching and understanding mathematical modelling through fermi-problems. In Tasks in primary mathematics teacher education(pp. 131-146). Springer. https://doi.org/10.1007/978-0-387-09669-8_10 | es_ES |
dc.description.references | Petrou, M., & Goulding, M. (2011). Conceptualising teachers' mathematical knowledge in teaching. In Mathematical knowledge in teaching(pp. 9-25). Springer. https://doi.org/10.1007/978-90-481-9766-8_2 | es_ES |
dc.description.references | Pólya, G. (1945).How to solve it. Princeton University Press, Princeton. https://doi.org/10.1515/9781400828678 | es_ES |
dc.description.references | Robinson, A. (2008). Dont just stand there - teach fermi problems!Physics Education,43(1), 83. https://doi.org/10.1088/0031-9120/43/01/009 | es_ES |
dc.description.references | Rowland, T. (2013). The knowledge quartet: the genesis and application of a framework for analysing math-ematics teaching and deepening teachers' mathematics knowledge.Sisyphus-Journal of Education,1(3),15-43. | es_ES |
dc.description.references | Rowland, T., Huckstep, P., & Thwaites, A. (2005). Elementary teachers' mathematics subject knowledge: Theknowledge quartet and the case of naomi. Journal of Mathematics Teacher Education,8(3), 255-281. https://doi.org/10.1007/s10857-005-0853-5 | es_ES |
dc.description.references | Rowland, T., & Turner, F. (2007). Developing and using the 'knowledge quartet': A framework for the observation of mathematics teaching.The Mathematics Educator,10(1), 107-124. | es_ES |
dc.description.references | Schoenfeld, A. H. (1985).Mathematical problem solving. Academic Press, Inc. | es_ES |
dc.description.references | Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching.Educational researcher,15(2),4-14. https://doi.org/10.3102/0013189X015002004 | es_ES |
dc.description.references | Sriraman, B., & Knott, L. (2009). The mathematics of estimation: Possibilities for interdisciplinary pedagogy and social consciousness.Interchange,40(2), 205-223. https://doi.org/10.1007/s10780-009-9090-7 | es_ES |
dc.description.references | Stohlmann, M. S., & Albarrac ́ın, L. (2016). What is known about elementary grades mathematical modelling.Education Research International,2016. https://doi.org/10.1155/2016/5240683 | es_ES |
dc.description.references | Turner, F., & Rowland, T. (2011). The knowledge quartet as an organising framework for developing and deep-ening teachers' mathematics knowledge. In Mathematical knowledge in teaching(pp. 195-212). Springer. https://doi.org/10.1007/978-90-481-9766-8_12 | es_ES |
dc.description.references | Vorhölter, K., Kaiser, G., & Borromeo Ferri, R. (2014). Modelling in mathematics classroom instruction: Aninnovative approach for transforming mathematics education. In Transforming mathematics instruction(pp. 21-36). Springer. https://doi.org/10.1007/978-3-319-04993-9_3 | es_ES |
dc.description.references | Weinstein, L., & Adam, J. A. (2009).Guesstimation: Solving the world's problems on the back of a cocktailnapkin. Princeton University Press. https://doi.org/10.1515/9781400824441 | es_ES |
dc.description.references | Winter, H. (1994). Modelle als konstrukte zwischen lebensweltlichen situationen und arithmetischen begriffen.Grundschule,26(3), 10-13. | es_ES |