- -

Un estudio exploratorio sobre el conocimiento del maestro para guiar actividades de modelización matemática en Educación Primaria

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Un estudio exploratorio sobre el conocimiento del maestro para guiar actividades de modelización matemática en Educación Primaria

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Fuertes, Rubén es_ES
dc.contributor.author Albarracín Gordo, Lluís es_ES
dc.date.accessioned 2020-03-06T13:09:22Z
dc.date.available 2020-03-06T13:09:22Z
dc.date.issued 2019-07-31
dc.identifier.uri http://hdl.handle.net/10251/138462
dc.description.abstract [EN] This article presents exploratory research to characterize the teacher’s knowledge needed to guide a modeling activity in Primary Education. A Fermi problem has been chosen as modeling activity and the theoretical framework on teacher knowledge used is the Rowland’s Knowledge Quartet. The analysis of an expert teacher’s interventions during the class activity allows us to identify the key knowledge that the teacher sets in motion. Among them we highlight the cognitive activations of students during the phases of developing a plan and executing it. es_ES
dc.description.abstract [ES] En este artículo se presenta una investigación de tipo exploratorio para caracterizar el conocimiento del profesor necesario para guiar una actividad de modelización en Educación Primaria. Como actividad se ha elegido un problema de Fermi y el marco teórico sobre conocimiento del profesor utilizado es el Knowledge Quartet de Rowland. El análisis de las intervenciones de una maestra experta durante una actividad nos permite identificar los conocimientos clave que pone en marcha la maestra. Entre ellos destacamos las activaciones cognitivas de los alumnos durante las fases de elaborar un plan y ejecutarlo. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Modelling in Science Education and Learning es_ES
dc.rights Reconocimiento - No comercial (by-nc) es_ES
dc.subject Knowledge for teaching es_ES
dc.subject Mathematical modeling es_ES
dc.subject Fermi problems es_ES
dc.subject Primary School es_ES
dc.subject Conocimiento del profesor es_ES
dc.subject Modelización matemática es_ES
dc.subject Problemas de Fermi es_ES
dc.subject Educación Primaria es_ES
dc.title Un estudio exploratorio sobre el conocimiento del maestro para guiar actividades de modelización matemática en Educación Primaria es_ES
dc.title.alternative An exploratory study of teacher knowledge to guide mathematical modeling activities in Primary Education es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/msel.2019.10977
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Fuertes, R.; Albarracín Gordo, L. (2019). Un estudio exploratorio sobre el conocimiento del maestro para guiar actividades de modelización matemática en Educación Primaria. Modelling in Science Education and Learning. 12(2):77-98. https://doi.org/10.4995/msel.2019.10977 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/msel.2019.10977 es_ES
dc.description.upvformatpinicio 77 es_ES
dc.description.upvformatpfin 98 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 1988-3145
dc.relation.pasarela OJS\10977 es_ES
dc.description.references Albarracíın, L. (2017). Los problemas de fermi como actividades para introducir la modelización: qué sabemosy qué más deberíamos saber. Modelling in Science Education and Learning,10(2), 117-136. https://doi.org/10.4995/msel.2017.7707 es_ES
dc.description.references Albarracín, L., & Gorgorió, N. (2014). Devising a plan to solve fermi problems involving large numbers.Educational Studies in Mathematics,86(1), 79-96. https://doi.org/10.1007/s10649-013-9528-9 es_ES
dc.description.references Albarracín, L., & Gorgorió, N. (2018). Students estimating large quantities: From simple strategies to thepopulation density model.EURASIA Journal of Mathematics, Science and Technology Education,14,10. https://doi.org/10.29333/ejmste/92285 es_ES
dc.description.references Albarracín, L., Lorente, C., Lopera, A., Pérez, H., & Gorgorió, N. (2015). Problemas de estimación de grandes cantidades en las aulas de educación primaria. Epsilon,32(89), 19-33. es_ES
dc.description.references Ärlebäck, J. B. (2009). On the use of realistic fermi problems for introducing mathematical modelling in school.The Mathematics Enthusiast,6(3), 331-364. es_ES
dc.description.references ÄrlebÄck, J. B. (2011). Exploring the solving process of groups solving realistic fermi problem from theperspective of the anthropological theory of didactics. In Proceedings of the seventh congress of the european society for research in mathematics education(pp. 1010-1019). es_ES
dc.description.references Ball, D., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of teacher education,59(5), 389-407. https://doi.org/10.1177/0022487108324554 es_ES
dc.description.references Blum, W. (2002). Icmi study 14: Applications and modelling in mathematics education-discussion document.Educational studies in mathematics,51(1-2), 149-171. https://doi.org/10.1023/A:1022435827400 es_ES
dc.description.references Blum, W., & Leiss, D. (2007). How do students and teachers deal with modelling problems. In Mathematical modelling (ictma 12): Education, engineering and economics(pp. 222-231). https://doi.org/10.1533/9780857099419.5.221 es_ES
dc.description.references Boukafri, K., Civil, M., & Planas, N. (2018). A teacher's use of revoicing in mathematical discussions. In Language and communication in mathematics education(pp. 157-169). Springer. https://doi.org/10.1007/978-3-319-75055-2_12 es_ES
dc.description.references Carrillo, J., Climent, N., Contreras, L., & Muñoz-Catalán, M. (2013). Mathematics teacher specialized knowl-edge.Proceedings of the 8th CERME. Turkey. es_ES
dc.description.references Czocher, J. A. (2016). Introducing modeling transition diagrams as a tool to connect mathematical modeling to mathematical thinking. Mathematical Thinking and Learning,18(2), 77-106. https://doi.org/10.1080/10986065.2016.1148530 es_ES
dc.description.references Diago, P., Ortega, M., Puig, L., & Ferrando, I. (2016). Diseño e implementación de tareas de modelización con ipad©: un enfoque dual. Modelling in Science Education and Learning,9(1), 35-56. https://doi.org/10.4995/msel.2016.4427 es_ES
dc.description.references Doerr, H. M., & English, L. D. (2003). A modeling perspective on students' mathematical reasoning about data. Journal for research in mathematics education, 110-136. https://doi.org/10.2307/30034902 es_ES
dc.description.references Efthimiou, C. J., & Llewellyn, R. A. (2007). Cinema, fermi problems and general education.Physics education,42(3), 253. https://doi.org/10.1088/0031-9120/42/3/003 es_ES
dc.description.references Fennema, E., & Franke, M. L. (1992).Teachers' knowledge and its impact.Macmillan Publishing Co, Inc. es_ES
dc.description.references Ferrando, I., Albarracín, L., Gallart, C., García-Raffi, L. M., & Gorgorió, N. (2017). Análisis de los modelos matemáticos producidos durante la resolución de problemas de fermi.Boletim de Educaçao Matemática,31(57), 220-242. https://doi.org/10.1590/1980-4415v31n57a11 es_ES
dc.description.references Ferrer, M., Fortuny, J. M., & Morera, L. (2014). Efectos de la actuaci ́on docente en la generaci ́on de oportunidades de aprendizaje matemático.Enseñanza de las ciencias: revista de investigación y experiencias didácticas,32(3), 385-405. https://doi.org/10.5565/rev/ensciencias.1231 es_ES
dc.description.references Gallart, C., Ferrando, I., García-Raffi, L. M., Albarracín, L., & Gorgorió, N. (2017). Design and implementationof a tool for analysing student products when they solve fermi problems. In Mathematical modelling andapplications(pp. 265-275). Springer. https://doi.org/10.1007/978-3-319-62968-1_23 es_ES
dc.description.references Lesh, R., & Harel, G. (2003). Problem solving, modeling, and local conceptual development.Mathematicalthinking and learning,5(2-3), 157-189. https://doi.org/10.1080/10986065.2003.9679998 es_ES
dc.description.references Peter-Koop, A. (2009). Teaching and understanding mathematical modelling through fermi-problems. In Tasks in primary mathematics teacher education(pp. 131-146). Springer. https://doi.org/10.1007/978-0-387-09669-8_10 es_ES
dc.description.references Petrou, M., & Goulding, M. (2011). Conceptualising teachers' mathematical knowledge in teaching. In Mathematical knowledge in teaching(pp. 9-25). Springer. https://doi.org/10.1007/978-90-481-9766-8_2 es_ES
dc.description.references Pólya, G. (1945).How to solve it. Princeton University Press, Princeton. https://doi.org/10.1515/9781400828678 es_ES
dc.description.references Robinson, A. (2008). Dont just stand there - teach fermi problems!Physics Education,43(1), 83. https://doi.org/10.1088/0031-9120/43/01/009 es_ES
dc.description.references Rowland, T. (2013). The knowledge quartet: the genesis and application of a framework for analysing math-ematics teaching and deepening teachers' mathematics knowledge.Sisyphus-Journal of Education,1(3),15-43. es_ES
dc.description.references Rowland, T., Huckstep, P., & Thwaites, A. (2005). Elementary teachers' mathematics subject knowledge: Theknowledge quartet and the case of naomi. Journal of Mathematics Teacher Education,8(3), 255-281. https://doi.org/10.1007/s10857-005-0853-5 es_ES
dc.description.references Rowland, T., & Turner, F. (2007). Developing and using the 'knowledge quartet': A framework for the observation of mathematics teaching.The Mathematics Educator,10(1), 107-124. es_ES
dc.description.references Schoenfeld, A. H. (1985).Mathematical problem solving. Academic Press, Inc. es_ES
dc.description.references Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching.Educational researcher,15(2),4-14. https://doi.org/10.3102/0013189X015002004 es_ES
dc.description.references Sriraman, B., & Knott, L. (2009). The mathematics of estimation: Possibilities for interdisciplinary pedagogy and social consciousness.Interchange,40(2), 205-223. https://doi.org/10.1007/s10780-009-9090-7 es_ES
dc.description.references Stohlmann, M. S., & Albarrac ́ın, L. (2016). What is known about elementary grades mathematical modelling.Education Research International,2016. https://doi.org/10.1155/2016/5240683 es_ES
dc.description.references Turner, F., & Rowland, T. (2011). The knowledge quartet as an organising framework for developing and deep-ening teachers' mathematics knowledge. In Mathematical knowledge in teaching(pp. 195-212). Springer. https://doi.org/10.1007/978-90-481-9766-8_12 es_ES
dc.description.references Vorhölter, K., Kaiser, G., & Borromeo Ferri, R. (2014). Modelling in mathematics classroom instruction: Aninnovative approach for transforming mathematics education. In Transforming mathematics instruction(pp. 21-36). Springer. https://doi.org/10.1007/978-3-319-04993-9_3 es_ES
dc.description.references Weinstein, L., & Adam, J. A. (2009).Guesstimation: Solving the world's problems on the back of a cocktailnapkin. Princeton University Press. https://doi.org/10.1515/9781400824441 es_ES
dc.description.references Winter, H. (1994). Modelle als konstrukte zwischen lebensweltlichen situationen und arithmetischen begriffen.Grundschule,26(3), 10-13. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem