- -

Air-Stable, Dinuclear and Tetranuclear sigma,pi-Acetylide Gold(I) Complexes and Their Catalytic Implications

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Air-Stable, Dinuclear and Tetranuclear sigma,pi-Acetylide Gold(I) Complexes and Their Catalytic Implications

Mostrar el registro completo del ítem

Grirrane, A.; García Gómez, H.; Corma Canós, A.; Alvarez González, E. (2013). Air-Stable, Dinuclear and Tetranuclear sigma,pi-Acetylide Gold(I) Complexes and Their Catalytic Implications. Chemistry - A European Journal. 19(37):12239-12244. https://doi.org/10.1002/chem.201301623

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/140182

Ficheros en el ítem

Metadatos del ítem

Título: Air-Stable, Dinuclear and Tetranuclear sigma,pi-Acetylide Gold(I) Complexes and Their Catalytic Implications
Autor: Grirrane, Abdessamad García Gómez, Hermenegildo Corma Canós, Avelino Alvarez González, Eleuterio
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] Two for one gold: Factors governing the formation of isolable digold(I) ó,ð-acetylide complexes are given (see scheme), indicating the general tendency of phosphine AuI precatalysts to form this type of complexes, ...[+]
Palabras clave: Gold , Gold complexes , Gold nanoparticles , Homogeneous catalysis , Hydroamination reactions
Derechos de uso: Cerrado
Fuente:
Chemistry - A European Journal. (issn: 0947-6539 )
DOI: 10.1002/chem.201301623
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1002/chem.201301623
Código del Proyecto:
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2012%2F014/
info:eu-repo/grantAgreement/MINECO//CTQ2012-32315/ES/REDUCCION FOTOCATALITICA DEL DIOXIDO DE CARBONO/
Agradecimientos:
Financial support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa and CTQ2012-36351) and Generalidad Valenciana (Prometeo 2012/014) is gratefully acknowledged
Tipo: Artículo

References

Hashmi, A. S. K., & Hutchings, G. J. (2006). Gold-Katalyse. Angewandte Chemie, 118(47), 8064-8105. doi:10.1002/ange.200602454

Hashmi, A. S. K., & Hutchings, G. J. (2006). Gold Catalysis. Angewandte Chemie International Edition, 45(47), 7896-7936. doi:10.1002/anie.200602454

Corma, A., Leyva-Pérez, A., & Sabater, M. J. (2011). Gold-Catalyzed Carbon−Heteroatom Bond-Forming Reactions. Chemical Reviews, 111(3), 1657-1712. doi:10.1021/cr100414u [+]
Hashmi, A. S. K., & Hutchings, G. J. (2006). Gold-Katalyse. Angewandte Chemie, 118(47), 8064-8105. doi:10.1002/ange.200602454

Hashmi, A. S. K., & Hutchings, G. J. (2006). Gold Catalysis. Angewandte Chemie International Edition, 45(47), 7896-7936. doi:10.1002/anie.200602454

Corma, A., Leyva-Pérez, A., & Sabater, M. J. (2011). Gold-Catalyzed Carbon−Heteroatom Bond-Forming Reactions. Chemical Reviews, 111(3), 1657-1712. doi:10.1021/cr100414u

Gorin, D. J., Sherry, B. D., & Toste, F. D. (2008). Ligand Effects in Homogeneous Au Catalysis. Chemical Reviews, 108(8), 3351-3378. doi:10.1021/cr068430g

Arcadi, A. (2008). Alternative Synthetic Methods through New Developments in Catalysis by Gold. Chemical Reviews, 108(8), 3266-3325. doi:10.1021/cr068435d

Li, Z., Brouwer, C., & He, C. (2008). Gold-Catalyzed Organic Transformations. Chemical Reviews, 108(8), 3239-3265. doi:10.1021/cr068434l

Jiménez-Núñez, E., & Echavarren, A. M. (2008). Gold-Catalyzed Cycloisomerizations of Enynes: A Mechanistic Perspective. Chemical Reviews, 108(8), 3326-3350. doi:10.1021/cr0684319

López-Carrillo, V., & Echavarren, A. M. (2010). Gold(I)-Catalyzed Intermolecular [2+2] Cycloaddition of Alkynes with Alkenes. Journal of the American Chemical Society, 132(27), 9292-9294. doi:10.1021/ja104177w

Hashmi, A. S. K., Wieteck, M., Braun, I., Rudolph, M., & Rominger, F. (2012). Vinylidengoldverbindungen: intermolekulare C(sp3)-H-Insertionen und Cyclopropanierungspfade. Angewandte Chemie, 124(42), 10785-10789. doi:10.1002/ange.201204015

Hashmi, A. S. K., Wieteck, M., Braun, I., Rudolph, M., & Rominger, F. (2012). Gold Vinylidene Complexes: Intermolecular C(sp3)H Insertions and Cyclopropanations Pathways. Angewandte Chemie International Edition, 51(42), 10633-10637. doi:10.1002/anie.201204015

Cheong, P. H.-Y., Morganelli, P., Luzung, M. R., Houk, K. N., & Toste, F. D. (2008). Gold-Catalyzed Cycloisomerization of 1,5-Allenynes via Dual Activation of an Ene Reaction. Journal of the American Chemical Society, 130(13), 4517-4526. doi:10.1021/ja711058f

Hooper, T. N., Green, M., & Russell, C. A. (2010). Cationic Au(i) alkyne complexes: synthesis, structure and reactivity. Chemical Communications, 46(13), 2313. doi:10.1039/b923900f

Mingos, D. M. P., Yau, J., Menzer, S., & Williams, D. J. (1995). Ein Gold(I)-[2]Catenan. Angewandte Chemie, 107(17), 2045-2047. doi:10.1002/ange.19951071730

Mingos, D. M. P., Yau, J., Menzer, S., & Williams, D. J. (1995). A Gold(I)[2]Catene. Angewandte Chemie International Edition in English, 34(17), 1894-1895. doi:10.1002/anie.199518941

Yip, S.-K., Cheng, E. C.-C., Yuan, L.-H., Zhu, N., & Yam, V. W.-W. (2004). Supramolecular Assembly of Luminescent Gold(I) Alkynylcalix[4]crown-6 Complexes with Planarη2,η2-Coordinated Gold(I) Centers. Angewandte Chemie, 116(37), 5062-5065. doi:10.1002/ange.200460744

Yip, S.-K., Cheng, E. C.-C., Yuan, L.-H., Zhu, N., & Yam, V. W.-W. (2004). Supramolecular Assembly of Luminescent Gold(I) Alkynylcalix[4]crown-6 Complexes with Planarη2,η2-Coordinated Gold(I) Centers. Angewandte Chemie International Edition, 43(37), 4954-4957. doi:10.1002/anie.200460744

Chui, S. S. Y., Ng, M. F. Y., & Che, C.-M. (2005). Structure Determination of Homoleptic AuI, AgI, and CuI Aryl/Alkylethynyl Coordination Polymers by X-ray Powder Diffraction. Chemistry - A European Journal, 11(6), 1739-1749. doi:10.1002/chem.200400881

Bruce, M. I., Jevric, M., Skelton, B. W., White, A. H., & Zaitseva, N. N. (2010). Phosphine-gold(I) derivatives of 1,1′-bis(alkynyl)metallocenes: Molecular structures of Fc’(CCX)2 [X = Au(PPh3), SiMe3] and Au4{(CC)2Fc’}2(PPh3)2 [Fc’ = Fe(η-C5H4-)2]. Journal of Organometallic Chemistry, 695(15-16), 1906-1910. doi:10.1016/j.jorganchem.2010.04.026

Himmelspach, A., Finze, M., & Raub, S. (2011). Tetraedrische Gold(I)-Cluster mit Carba-closo-dodecaboranylethinido-Liganden: [{12-(R3PAu)2CC-closo-1-CB11H11}2]. Angewandte Chemie, 123(11), 2676-2679. doi:10.1002/ange.201007239

Himmelspach, A., Finze, M., & Raub, S. (2011). Tetrahedral Gold(I) Clusters with Carba-closo-dodecaboranylethynido Ligands: [{12-(R3PAu)2CC-closo-1-CB11H11}2]. Angewandte Chemie International Edition, 50(11), 2628-2631. doi:10.1002/anie.201007239

Koshevoy, I. O., Lin, C.-L., Karttunen, A. J., Haukka, M., Shih, C.-W., Chou, P.-T., … Pakkanen, T. A. (2011). Octanuclear gold(i) alkynyl-diphosphine clusters showing thermochromic luminescence. Chemical Communications, 47(19), 5533. doi:10.1039/c1cc11352f

Weber, D., Tarselli, M. A., & Gagné, M. R. (2009). Mechanistic Surprises in the Gold(I)-Catalyzed Intramolecular Hydroarylation of Allenes. Angewandte Chemie, 121(31), 5843-5846. doi:10.1002/ange.200902049

Weber, D., Tarselli, M. A., & Gagné, M. R. (2009). Mechanistic Surprises in the Gold(I)-Catalyzed Intramolecular Hydroarylation of Allenes. Angewandte Chemie International Edition, 48(31), 5733-5736. doi:10.1002/anie.200902049

Hashmi, A. S. K., Braun, I., Nösel, P., Schädlich, J., Wieteck, M., Rudolph, M., & Rominger, F. (2012). Eine einfache Gold-katalysierte Synthese von Benzofulvenen -gem-diaurierte Spezies als «Instant-Dual-Activation»-Präkatalysatoren. Angewandte Chemie, 124(18), 4532-4536. doi:10.1002/ange.201109183

Hashmi, A. S. K., Braun, I., Nösel, P., Schädlich, J., Wieteck, M., Rudolph, M., & Rominger, F. (2012). Simple Gold-Catalyzed Synthesis of Benzofulvenes-gem-Diaurated Species as «Instant Dual-Activation» Precatalysts. Angewandte Chemie International Edition, 51(18), 4456-4460. doi:10.1002/anie.201109183

Hansmann, M. M., Rudolph, M., Rominger, F., & Hashmi, A. S. K. (2013). Mechanistisches Umschalten bei der dualen Goldkatalyse von Diinen: C(sp3)-H-Aktivierung über Bifurkation - Vinyliden- versus Carbenreaktionswege. Angewandte Chemie, 125(9), 2653-2659. doi:10.1002/ange.201208777

Hansmann, M. M., Rudolph, M., Rominger, F., & Hashmi, A. S. K. (2013). Mechanistic Switch in Dual Gold Catalysis of Diynes: C(sp3)-H Activation through Bifurcation-Vinylidene versus Carbene Pathways. Angewandte Chemie International Edition, 52(9), 2593-2598. doi:10.1002/anie.201208777

Hashmi, A. S. K., Braun, I., Rudolph, M., & Rominger, F. (2012). The Role of Gold Acetylides as a Selectivity Trigger and the Importance of gem-Diaurated Species in the Gold-Catalyzed Hydroarylating-Aromatization of Arene-Diynes. Organometallics, 31(2), 644-661. doi:10.1021/om200946m

Hansmann, M. M., Rominger, F., & Hashmi, A. S. K. (2013). Gold–allenylidenes – an experimental and theoretical study. Chemical Science, 4(4), 1552. doi:10.1039/c3sc22227f

Grirrane, A., Garcia, H., Corma, A., & Álvarez, E. (2011). Intermolecular [2 + 2] Cycloaddition of Alkyne-Alkene Catalyzed by Au(I) Complexes. What Are the Catalytic Sites Involved? ACS Catalysis, 1(12), 1647-1653. doi:10.1021/cs2004278

Brown, T. J., & Widenhoefer, R. A. (2011). Cationic Gold(I) π-Complexes of Terminal Alkynes and Their Conversion to Dinuclear σ,π-Acetylide Complexes. Organometallics, 30(21), 6003-6009. doi:10.1021/om200840g

Gómez-Suárez, A., & Nolan, S. P. (2012). Katalyse mit zweikernigen Goldkomplexen: Sind zwei Goldzentren besser als eines? Angewandte Chemie, 124(33), 8278-8281. doi:10.1002/ange.201203587

Gómez-Suárez, A., & Nolan, S. P. (2012). Dinuclear Gold Catalysis: Are Two Gold Centers Better than One? Angewandte Chemie International Edition, 51(33), 8156-8159. doi:10.1002/anie.201203587

Müller, T. E., Hultzsch, K. C., Yus, M., Foubelo, F., & Tada, M. (2008). Hydroamination: Direct Addition of Amines to Alkenes and Alkynes. Chemical Reviews, 108(9), 3795-3892. doi:10.1021/cr0306788

Beller, M., Seayad, J., Tillack, A., & Jiao, H. (2004). Katalytische Markownikow- und Anti-Markownikow-Funktionalisierung von Alkenen und Alkinen. Angewandte Chemie, 116(26), 3448-3479. doi:10.1002/ange.200300616

Beller, M., Seayad, J., Tillack, A., & Jiao, H. (2004). Catalytic Markovnikov and anti-Markovnikov Functionalization of Alkenes and Alkynes: Recent Developments and Trends. Angewandte Chemie International Edition, 43(26), 3368-3398. doi:10.1002/anie.200300616

Alonso, F., Beletskaya, I. P., & Yus, M. (2004). Transition-Metal-Catalyzed Addition of Heteroatom−Hydrogen Bonds to Alkynes. Chemical Reviews, 104(6), 3079-3160. doi:10.1021/cr0201068

Pohlki, F., & Doye, S. (2003). The catalytic hydroamination of alkynes. Chemical Society Reviews, 32(2), 104-114. doi:10.1039/b200386b

Kanemitsu, T., Umehara, A., Haneji, R., Nagata, K., & Itoh, T. (2012). A simple proline-based organocatalyst for the enantioselective reduction of imines using trichlorosilane as a reductant. Tetrahedron, 68(20), 3893-3898. doi:10.1016/j.tet.2012.03.035

Haak, E., Bytschkov, I., & Doye, S. (1999). Intermolekulare, durch Dimethyltitanocen katalysierte Hydroaminierung von Alkinen. Angewandte Chemie, 111(22), 3584-3586. doi:10.1002/(sici)1521-3757(19991115)111:22<3584::aid-ange3584>3.0.co;2-o

Haak, E., Bytschkov, I., & Doye, S. (1999). Intermolecular Hydroamination of Alkynes Catalyzed by Dimethyltitanocene. Angewandte Chemie International Edition, 38(22), 3389-3391. doi:10.1002/(sici)1521-3773(19991115)38:22<3389::aid-anie3389>3.0.co;2-e

Tillack, A., Khedkar, V., Jiao, H., & Beller, M. (2005). A General Study of Aryloxo and Alkoxo Ligands in the Titanium-Catalyzed Intermolecular Hydroamination of Terminal Alkynes. European Journal of Organic Chemistry, 2005(23), 5001-5012. doi:10.1002/ejoc.200500423

Li, Y., & Marks, T. J. (1996). Organolanthanide-Catalyzed Intramolecular Hydroamination/Cyclization of Aminoalkynes. Journal of the American Chemical Society, 118(39), 9295-9306. doi:10.1021/ja9612413

Baranger, A. M., Walsh, P. J., & Bergman, R. G. (1993). Variable regiochemistry in the stoichiometric and catalytic hydroamination of alkynes by imidozirconium complexes caused by an unusual dependence of the rate law on alkyne structure and temperature. Journal of the American Chemical Society, 115(7), 2753-2763. doi:10.1021/ja00060a025

Tokunaga, M., Eckert, M., & Wakatsuki, Y. (1999). Rutheniumkatalysierte intermolekulare Hydroaminierung terminaler Alkine mit Anilinen: eine praktikable Synthese von aromatischen Ketiminen. Angewandte Chemie, 111(21), 3416-3419. doi:10.1002/(sici)1521-3757(19991102)111:21<3416::aid-ange3416>3.0.co;2-6

Tokunaga, M., Eckert, M., & Wakatsuki, Y. (1999). Ruthenium-Catalyzed Intermolecular Hydroamination of Terminal Alkynes with Anilines: A Practical Synthesis of Aromatic Ketimines. Angewandte Chemie International Edition, 38(21), 3222-3225. doi:10.1002/(sici)1521-3773(19991102)38:21<3222::aid-anie3222>3.0.co;2-7

Shimada, T., & Yamamoto, Y. (2002). Palladium-Catalyzed Intermolecular Hydroamination of Alkynes:  A Dramatic Rate-Enhancement Effect ofo-Aminophenol. Journal of the American Chemical Society, 124(43), 12670-12671. doi:10.1021/ja027683y

Barluenga, J., Aznar, F., Liz, R., & Rodes, R. (1980). Catalytic and non-catalytic addition of aromatic amines to terminal acetylenes in the presence of mercury(II) chloride and acetate. Journal of the Chemical Society, Perkin Transactions 1, 2732. doi:10.1039/p19800002732

Alonso-Moreno, C., Carrillo-Hermosilla, F., Romero-Fernández, J., Rodríguez, A. M., Otero, A., & Antiñolo, A. (2009). Well-Defined Regioselective Iminopyridine Rhodium Catalysts for Anti-Markovnikov Addition of Aromatic Primary Amines to 1-Octyne. Advanced Synthesis & Catalysis, 351(6), 881-890. doi:10.1002/adsc.200800786

Skouta, R., & Li, C.-J. (2008). Gold-catalyzed reactions of C–H bonds. Tetrahedron, 64(22), 4917-4938. doi:10.1016/j.tet.2008.03.083

Lavallo, V., Frey, G. D., Donnadieu, B., Soleilhavoup, M., & Bertrand, G. (2008). Homogeneous Catalytic Hydroamination of Alkynes and Allenes with Ammonia. Angewandte Chemie, 120(28), 5302-5306. doi:10.1002/ange.200801136

Lavallo, V., Frey, G. D., Donnadieu, B., Soleilhavoup, M., & Bertrand, G. (2008). Homogeneous Catalytic Hydroamination of Alkynes and Allenes with Ammonia. Angewandte Chemie International Edition, 47(28), 5224-5228. doi:10.1002/anie.200801136

Leyva, A., & Corma, A. (2009). Reusable Gold(I) Catalysts with Unique Regioselectivity for Intermolecular Hydroamination of Alkynes. Advanced Synthesis & Catalysis, 351(17), 2876-2886. doi:10.1002/adsc.200900491

Liu, X.-Y., Guo, Z., Dong, S. S., Li, X.-H., & Che, C.-M. (2011). Highly Efficient and Diastereoselective Gold(I)-Catalyzed Synthesis of Tertiary Amines from Secondary Amines and Alkynes: Substrate Scope and Mechanistic Insights. Chemistry - A European Journal, 17(46), 12932-12945. doi:10.1002/chem.201101982

Katari, M., Rao, M. N., Rajaraman, G., & Ghosh, P. (2012). Computational Insight into a Gold(I) N-Heterocyclic Carbene Mediated Alkyne Hydroamination Reaction. Inorganic Chemistry, 51(10), 5593-5604. doi:10.1021/ic2024605

Ito, H., Harada, T., Ohmiya, H., & Sawamura, M. (2011). Intramolecular hydroamination of alkynic sulfonamides catalyzed by a gold–triethynylphosphine complex: Construction of azepine frameworks by 7-exo-dig cyclization. Beilstein Journal of Organic Chemistry, 7, 951-959. doi:10.3762/bjoc.7.106

Nieto-Oberhuber, C., López, S., & Echavarren, A. M. (2005). Intramolecular [4 + 2] Cycloadditions of 1,3-Enynes or Arylalkynes with Alkenes with Highly Reactive Cationic Phosphine Au(I) Complexes. Journal of the American Chemical Society, 127(17), 6178-6179. doi:10.1021/ja042257t

Buzas, A. K., Istrate, F. M., & Gagosz, F. (2007). Gold(I)-Catalyzed Isomerization of Allenyl Carbinol Esters:  An Efficient Access to Functionalized 1,3-Butadien-2-ol Esters. Organic Letters, 9(6), 985-988. doi:10.1021/ol063031t

Schmidbaur, H. (1990). The fascinating implications of new results in gold chemistry. Gold Bulletin, 23(1), 11-21. doi:10.1007/bf03214710

Mézailles, N., Ricard, L., & Gagosz, F. (2005). Phosphine Gold(I) Bis-(trifluoromethanesulfonyl)imidate Complexes as New Highly Efficient and Air-Stable Catalysts for the Cycloisomerization of Enynes. Organic Letters, 7(19), 4133-4136. doi:10.1021/ol0515917

Bruce, M., & Duffy, D. (1986). Chemistry of the Group-1B Metals. XIX. Crystal and Molecular-Structures of (2-Phenylethynyl)(Triphenylphosphine)Gold(I), Au(C=CPh)(PPh3). Australian Journal of Chemistry, 39(10), 1697. doi:10.1071/ch9861697

Emeljanenko, D., Kaifer, E., & Himmel, H.-J. (2011). Guanidino-Functionalised Aromatic Electron Donors at Work: Competing Hydrogen- and Electron-Transfer Reactions in the Course of the Synthesis of Gold Acetylide Complexes. European Journal of Inorganic Chemistry, 2011(19), 2975-2983. doi:10.1002/ejic.201100160

HUTCHINGS, G. (1985). Vapor phase hydrochlorination of acetylene: Correlation of catalytic activity of supported metal chloride catalysts. Journal of Catalysis, 96(1), 292-295. doi:10.1016/0021-9517(85)90383-5

Oliver-Meseguer, J., Cabrero-Antonino, J. R., Dominguez, I., Leyva-Perez, A., & Corma, A. (2012). Small Gold Clusters Formed in Solution Give Reaction Turnover Numbers of 107 at Room Temperature. Science, 338(6113), 1452-1455. doi:10.1126/science.1227813

Hashmi, A. S. K. (2012). Sub-Nanosized Gold Catalysts. Science, 338(6113), 1434-1434. doi:10.1126/science.1231901

Haruta, M., Kobayashi, T., Sano, H., & Yamada, N. (1987). Novel Gold Catalysts for the Oxidation of Carbon Monoxide at a Temperature far Below 0 °C. Chemistry Letters, 16(2), 405-408. doi:10.1246/cl.1987.405

Herzing, A. A., Kiely, C. J., Carley, A. F., Landon, P., & Hutchings, G. J. (2008). Identification of Active Gold Nanoclusters on Iron Oxide Supports for CO Oxidation. Science, 321(5894), 1331-1335. doi:10.1126/science.1159639

Eustis, S., & El-Sayed, M. A. (2006). Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev., 35(3), 209-217. doi:10.1039/b514191e

Khin, C., Hashmi, A. S. K., & Rominger, F. (2010). Gold(I) Complexes of P,N Ligands and Their Catalytic Activity. European Journal of Inorganic Chemistry, 2010(7), 1063-1069. doi:10.1002/ejic.200900964

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem