Mostrar el registro sencillo del ítem
dc.contributor.author | Grirrane, Abdessamad | es_ES |
dc.contributor.author | García Gómez, Hermenegildo | es_ES |
dc.contributor.author | Corma Canós, Avelino | es_ES |
dc.contributor.author | Alvarez González, Eleuterio | es_ES |
dc.date.accessioned | 2020-04-06T08:55:34Z | |
dc.date.available | 2020-04-06T08:55:34Z | |
dc.date.issued | 2013 | es_ES |
dc.identifier.issn | 0947-6539 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/140182 | |
dc.description.abstract | [EN] Two for one gold: Factors governing the formation of isolable digold(I) ó,ð-acetylide complexes are given (see scheme), indicating the general tendency of phosphine AuI precatalysts to form this type of complexes, which are involved as reaction intermediates in gold(I)-catalyzed reactions. Mechanistic insights into the intermolecular hydroamination of aniline and terminal alkynes catalyzed by gold(I) have shown the role of a fluxional, cationic ó,ð-digold alkynide complex as one of the intermediates in the formation of imines. | es_ES |
dc.description.sponsorship | Financial support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa and CTQ2012-36351) and Generalidad Valenciana (Prometeo 2012/014) is gratefully acknowledged | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | Chemistry - A European Journal | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Gold | es_ES |
dc.subject | Gold complexes | es_ES |
dc.subject | Gold nanoparticles | es_ES |
dc.subject | Homogeneous catalysis | es_ES |
dc.subject | Hydroamination reactions | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Air-Stable, Dinuclear and Tetranuclear sigma,pi-Acetylide Gold(I) Complexes and Their Catalytic Implications | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/chem.201301623 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2012%2F014/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTQ2012-32315/ES/REDUCCION FOTOCATALITICA DEL DIOXIDO DE CARBONO/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Grirrane, A.; García Gómez, H.; Corma Canós, A.; Alvarez González, E. (2013). Air-Stable, Dinuclear and Tetranuclear sigma,pi-Acetylide Gold(I) Complexes and Their Catalytic Implications. Chemistry - A European Journal. 19(37):12239-12244. https://doi.org/10.1002/chem.201301623 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/chem.201301623 | es_ES |
dc.description.upvformatpinicio | 12239 | es_ES |
dc.description.upvformatpfin | 12244 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 19 | es_ES |
dc.description.issue | 37 | es_ES |
dc.relation.pasarela | S\256264 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Hashmi, A. S. K., & Hutchings, G. J. (2006). Gold-Katalyse. Angewandte Chemie, 118(47), 8064-8105. doi:10.1002/ange.200602454 | es_ES |
dc.description.references | Hashmi, A. S. K., & Hutchings, G. J. (2006). Gold Catalysis. Angewandte Chemie International Edition, 45(47), 7896-7936. doi:10.1002/anie.200602454 | es_ES |
dc.description.references | Corma, A., Leyva-Pérez, A., & Sabater, M. J. (2011). Gold-Catalyzed Carbon−Heteroatom Bond-Forming Reactions. Chemical Reviews, 111(3), 1657-1712. doi:10.1021/cr100414u | es_ES |
dc.description.references | Gorin, D. J., Sherry, B. D., & Toste, F. D. (2008). Ligand Effects in Homogeneous Au Catalysis. Chemical Reviews, 108(8), 3351-3378. doi:10.1021/cr068430g | es_ES |
dc.description.references | Arcadi, A. (2008). Alternative Synthetic Methods through New Developments in Catalysis by Gold. Chemical Reviews, 108(8), 3266-3325. doi:10.1021/cr068435d | es_ES |
dc.description.references | Li, Z., Brouwer, C., & He, C. (2008). Gold-Catalyzed Organic Transformations. Chemical Reviews, 108(8), 3239-3265. doi:10.1021/cr068434l | es_ES |
dc.description.references | Jiménez-Núñez, E., & Echavarren, A. M. (2008). Gold-Catalyzed Cycloisomerizations of Enynes: A Mechanistic Perspective. Chemical Reviews, 108(8), 3326-3350. doi:10.1021/cr0684319 | es_ES |
dc.description.references | López-Carrillo, V., & Echavarren, A. M. (2010). Gold(I)-Catalyzed Intermolecular [2+2] Cycloaddition of Alkynes with Alkenes. Journal of the American Chemical Society, 132(27), 9292-9294. doi:10.1021/ja104177w | es_ES |
dc.description.references | Hashmi, A. S. K., Wieteck, M., Braun, I., Rudolph, M., & Rominger, F. (2012). Vinylidengoldverbindungen: intermolekulare C(sp3)-H-Insertionen und Cyclopropanierungspfade. Angewandte Chemie, 124(42), 10785-10789. doi:10.1002/ange.201204015 | es_ES |
dc.description.references | Hashmi, A. S. K., Wieteck, M., Braun, I., Rudolph, M., & Rominger, F. (2012). Gold Vinylidene Complexes: Intermolecular C(sp3)H Insertions and Cyclopropanations Pathways. Angewandte Chemie International Edition, 51(42), 10633-10637. doi:10.1002/anie.201204015 | es_ES |
dc.description.references | Cheong, P. H.-Y., Morganelli, P., Luzung, M. R., Houk, K. N., & Toste, F. D. (2008). Gold-Catalyzed Cycloisomerization of 1,5-Allenynes via Dual Activation of an Ene Reaction. Journal of the American Chemical Society, 130(13), 4517-4526. doi:10.1021/ja711058f | es_ES |
dc.description.references | Hooper, T. N., Green, M., & Russell, C. A. (2010). Cationic Au(i) alkyne complexes: synthesis, structure and reactivity. Chemical Communications, 46(13), 2313. doi:10.1039/b923900f | es_ES |
dc.description.references | Mingos, D. M. P., Yau, J., Menzer, S., & Williams, D. J. (1995). Ein Gold(I)-[2]Catenan. Angewandte Chemie, 107(17), 2045-2047. doi:10.1002/ange.19951071730 | es_ES |
dc.description.references | Mingos, D. M. P., Yau, J., Menzer, S., & Williams, D. J. (1995). A Gold(I)[2]Catene. Angewandte Chemie International Edition in English, 34(17), 1894-1895. doi:10.1002/anie.199518941 | es_ES |
dc.description.references | Yip, S.-K., Cheng, E. C.-C., Yuan, L.-H., Zhu, N., & Yam, V. W.-W. (2004). Supramolecular Assembly of Luminescent Gold(I) Alkynylcalix[4]crown-6 Complexes with Planarη2,η2-Coordinated Gold(I) Centers. Angewandte Chemie, 116(37), 5062-5065. doi:10.1002/ange.200460744 | es_ES |
dc.description.references | Yip, S.-K., Cheng, E. C.-C., Yuan, L.-H., Zhu, N., & Yam, V. W.-W. (2004). Supramolecular Assembly of Luminescent Gold(I) Alkynylcalix[4]crown-6 Complexes with Planarη2,η2-Coordinated Gold(I) Centers. Angewandte Chemie International Edition, 43(37), 4954-4957. doi:10.1002/anie.200460744 | es_ES |
dc.description.references | Chui, S. S. Y., Ng, M. F. Y., & Che, C.-M. (2005). Structure Determination of Homoleptic AuI, AgI, and CuI Aryl/Alkylethynyl Coordination Polymers by X-ray Powder Diffraction. Chemistry - A European Journal, 11(6), 1739-1749. doi:10.1002/chem.200400881 | es_ES |
dc.description.references | Bruce, M. I., Jevric, M., Skelton, B. W., White, A. H., & Zaitseva, N. N. (2010). Phosphine-gold(I) derivatives of 1,1′-bis(alkynyl)metallocenes: Molecular structures of Fc’(CCX)2 [X = Au(PPh3), SiMe3] and Au4{(CC)2Fc’}2(PPh3)2 [Fc’ = Fe(η-C5H4-)2]. Journal of Organometallic Chemistry, 695(15-16), 1906-1910. doi:10.1016/j.jorganchem.2010.04.026 | es_ES |
dc.description.references | Himmelspach, A., Finze, M., & Raub, S. (2011). Tetraedrische Gold(I)-Cluster mit Carba-closo-dodecaboranylethinido-Liganden: [{12-(R3PAu)2CC-closo-1-CB11H11}2]. Angewandte Chemie, 123(11), 2676-2679. doi:10.1002/ange.201007239 | es_ES |
dc.description.references | Himmelspach, A., Finze, M., & Raub, S. (2011). Tetrahedral Gold(I) Clusters with Carba-closo-dodecaboranylethynido Ligands: [{12-(R3PAu)2CC-closo-1-CB11H11}2]. Angewandte Chemie International Edition, 50(11), 2628-2631. doi:10.1002/anie.201007239 | es_ES |
dc.description.references | Koshevoy, I. O., Lin, C.-L., Karttunen, A. J., Haukka, M., Shih, C.-W., Chou, P.-T., … Pakkanen, T. A. (2011). Octanuclear gold(i) alkynyl-diphosphine clusters showing thermochromic luminescence. Chemical Communications, 47(19), 5533. doi:10.1039/c1cc11352f | es_ES |
dc.description.references | Weber, D., Tarselli, M. A., & Gagné, M. R. (2009). Mechanistic Surprises in the Gold(I)-Catalyzed Intramolecular Hydroarylation of Allenes. Angewandte Chemie, 121(31), 5843-5846. doi:10.1002/ange.200902049 | es_ES |
dc.description.references | Weber, D., Tarselli, M. A., & Gagné, M. R. (2009). Mechanistic Surprises in the Gold(I)-Catalyzed Intramolecular Hydroarylation of Allenes. Angewandte Chemie International Edition, 48(31), 5733-5736. doi:10.1002/anie.200902049 | es_ES |
dc.description.references | Hashmi, A. S. K., Braun, I., Nösel, P., Schädlich, J., Wieteck, M., Rudolph, M., & Rominger, F. (2012). Eine einfache Gold-katalysierte Synthese von Benzofulvenen -gem-diaurierte Spezies als «Instant-Dual-Activation»-Präkatalysatoren. Angewandte Chemie, 124(18), 4532-4536. doi:10.1002/ange.201109183 | es_ES |
dc.description.references | Hashmi, A. S. K., Braun, I., Nösel, P., Schädlich, J., Wieteck, M., Rudolph, M., & Rominger, F. (2012). Simple Gold-Catalyzed Synthesis of Benzofulvenes-gem-Diaurated Species as «Instant Dual-Activation» Precatalysts. Angewandte Chemie International Edition, 51(18), 4456-4460. doi:10.1002/anie.201109183 | es_ES |
dc.description.references | Hansmann, M. M., Rudolph, M., Rominger, F., & Hashmi, A. S. K. (2013). Mechanistisches Umschalten bei der dualen Goldkatalyse von Diinen: C(sp3)-H-Aktivierung über Bifurkation - Vinyliden- versus Carbenreaktionswege. Angewandte Chemie, 125(9), 2653-2659. doi:10.1002/ange.201208777 | es_ES |
dc.description.references | Hansmann, M. M., Rudolph, M., Rominger, F., & Hashmi, A. S. K. (2013). Mechanistic Switch in Dual Gold Catalysis of Diynes: C(sp3)-H Activation through Bifurcation-Vinylidene versus Carbene Pathways. Angewandte Chemie International Edition, 52(9), 2593-2598. doi:10.1002/anie.201208777 | es_ES |
dc.description.references | Hashmi, A. S. K., Braun, I., Rudolph, M., & Rominger, F. (2012). The Role of Gold Acetylides as a Selectivity Trigger and the Importance of gem-Diaurated Species in the Gold-Catalyzed Hydroarylating-Aromatization of Arene-Diynes. Organometallics, 31(2), 644-661. doi:10.1021/om200946m | es_ES |
dc.description.references | Hansmann, M. M., Rominger, F., & Hashmi, A. S. K. (2013). Gold–allenylidenes – an experimental and theoretical study. Chemical Science, 4(4), 1552. doi:10.1039/c3sc22227f | es_ES |
dc.description.references | Grirrane, A., Garcia, H., Corma, A., & Álvarez, E. (2011). Intermolecular [2 + 2] Cycloaddition of Alkyne-Alkene Catalyzed by Au(I) Complexes. What Are the Catalytic Sites Involved? ACS Catalysis, 1(12), 1647-1653. doi:10.1021/cs2004278 | es_ES |
dc.description.references | Brown, T. J., & Widenhoefer, R. A. (2011). Cationic Gold(I) π-Complexes of Terminal Alkynes and Their Conversion to Dinuclear σ,π-Acetylide Complexes. Organometallics, 30(21), 6003-6009. doi:10.1021/om200840g | es_ES |
dc.description.references | Gómez-Suárez, A., & Nolan, S. P. (2012). Katalyse mit zweikernigen Goldkomplexen: Sind zwei Goldzentren besser als eines? Angewandte Chemie, 124(33), 8278-8281. doi:10.1002/ange.201203587 | es_ES |
dc.description.references | Gómez-Suárez, A., & Nolan, S. P. (2012). Dinuclear Gold Catalysis: Are Two Gold Centers Better than One? Angewandte Chemie International Edition, 51(33), 8156-8159. doi:10.1002/anie.201203587 | es_ES |
dc.description.references | Müller, T. E., Hultzsch, K. C., Yus, M., Foubelo, F., & Tada, M. (2008). Hydroamination: Direct Addition of Amines to Alkenes and Alkynes. Chemical Reviews, 108(9), 3795-3892. doi:10.1021/cr0306788 | es_ES |
dc.description.references | Beller, M., Seayad, J., Tillack, A., & Jiao, H. (2004). Katalytische Markownikow- und Anti-Markownikow-Funktionalisierung von Alkenen und Alkinen. Angewandte Chemie, 116(26), 3448-3479. doi:10.1002/ange.200300616 | es_ES |
dc.description.references | Beller, M., Seayad, J., Tillack, A., & Jiao, H. (2004). Catalytic Markovnikov and anti-Markovnikov Functionalization of Alkenes and Alkynes: Recent Developments and Trends. Angewandte Chemie International Edition, 43(26), 3368-3398. doi:10.1002/anie.200300616 | es_ES |
dc.description.references | Alonso, F., Beletskaya, I. P., & Yus, M. (2004). Transition-Metal-Catalyzed Addition of Heteroatom−Hydrogen Bonds to Alkynes. Chemical Reviews, 104(6), 3079-3160. doi:10.1021/cr0201068 | es_ES |
dc.description.references | Pohlki, F., & Doye, S. (2003). The catalytic hydroamination of alkynes. Chemical Society Reviews, 32(2), 104-114. doi:10.1039/b200386b | es_ES |
dc.description.references | Kanemitsu, T., Umehara, A., Haneji, R., Nagata, K., & Itoh, T. (2012). A simple proline-based organocatalyst for the enantioselective reduction of imines using trichlorosilane as a reductant. Tetrahedron, 68(20), 3893-3898. doi:10.1016/j.tet.2012.03.035 | es_ES |
dc.description.references | Haak, E., Bytschkov, I., & Doye, S. (1999). Intermolekulare, durch Dimethyltitanocen katalysierte Hydroaminierung von Alkinen. Angewandte Chemie, 111(22), 3584-3586. doi:10.1002/(sici)1521-3757(19991115)111:22<3584::aid-ange3584>3.0.co;2-o | es_ES |
dc.description.references | Haak, E., Bytschkov, I., & Doye, S. (1999). Intermolecular Hydroamination of Alkynes Catalyzed by Dimethyltitanocene. Angewandte Chemie International Edition, 38(22), 3389-3391. doi:10.1002/(sici)1521-3773(19991115)38:22<3389::aid-anie3389>3.0.co;2-e | es_ES |
dc.description.references | Tillack, A., Khedkar, V., Jiao, H., & Beller, M. (2005). A General Study of Aryloxo and Alkoxo Ligands in the Titanium-Catalyzed Intermolecular Hydroamination of Terminal Alkynes. European Journal of Organic Chemistry, 2005(23), 5001-5012. doi:10.1002/ejoc.200500423 | es_ES |
dc.description.references | Li, Y., & Marks, T. J. (1996). Organolanthanide-Catalyzed Intramolecular Hydroamination/Cyclization of Aminoalkynes. Journal of the American Chemical Society, 118(39), 9295-9306. doi:10.1021/ja9612413 | es_ES |
dc.description.references | Baranger, A. M., Walsh, P. J., & Bergman, R. G. (1993). Variable regiochemistry in the stoichiometric and catalytic hydroamination of alkynes by imidozirconium complexes caused by an unusual dependence of the rate law on alkyne structure and temperature. Journal of the American Chemical Society, 115(7), 2753-2763. doi:10.1021/ja00060a025 | es_ES |
dc.description.references | Tokunaga, M., Eckert, M., & Wakatsuki, Y. (1999). Rutheniumkatalysierte intermolekulare Hydroaminierung terminaler Alkine mit Anilinen: eine praktikable Synthese von aromatischen Ketiminen. Angewandte Chemie, 111(21), 3416-3419. doi:10.1002/(sici)1521-3757(19991102)111:21<3416::aid-ange3416>3.0.co;2-6 | es_ES |
dc.description.references | Tokunaga, M., Eckert, M., & Wakatsuki, Y. (1999). Ruthenium-Catalyzed Intermolecular Hydroamination of Terminal Alkynes with Anilines: A Practical Synthesis of Aromatic Ketimines. Angewandte Chemie International Edition, 38(21), 3222-3225. doi:10.1002/(sici)1521-3773(19991102)38:21<3222::aid-anie3222>3.0.co;2-7 | es_ES |
dc.description.references | Shimada, T., & Yamamoto, Y. (2002). Palladium-Catalyzed Intermolecular Hydroamination of Alkynes: A Dramatic Rate-Enhancement Effect ofo-Aminophenol. Journal of the American Chemical Society, 124(43), 12670-12671. doi:10.1021/ja027683y | es_ES |
dc.description.references | Barluenga, J., Aznar, F., Liz, R., & Rodes, R. (1980). Catalytic and non-catalytic addition of aromatic amines to terminal acetylenes in the presence of mercury(II) chloride and acetate. Journal of the Chemical Society, Perkin Transactions 1, 2732. doi:10.1039/p19800002732 | es_ES |
dc.description.references | Alonso-Moreno, C., Carrillo-Hermosilla, F., Romero-Fernández, J., Rodríguez, A. M., Otero, A., & Antiñolo, A. (2009). Well-Defined Regioselective Iminopyridine Rhodium Catalysts for Anti-Markovnikov Addition of Aromatic Primary Amines to 1-Octyne. Advanced Synthesis & Catalysis, 351(6), 881-890. doi:10.1002/adsc.200800786 | es_ES |
dc.description.references | Skouta, R., & Li, C.-J. (2008). Gold-catalyzed reactions of C–H bonds. Tetrahedron, 64(22), 4917-4938. doi:10.1016/j.tet.2008.03.083 | es_ES |
dc.description.references | Lavallo, V., Frey, G. D., Donnadieu, B., Soleilhavoup, M., & Bertrand, G. (2008). Homogeneous Catalytic Hydroamination of Alkynes and Allenes with Ammonia. Angewandte Chemie, 120(28), 5302-5306. doi:10.1002/ange.200801136 | es_ES |
dc.description.references | Lavallo, V., Frey, G. D., Donnadieu, B., Soleilhavoup, M., & Bertrand, G. (2008). Homogeneous Catalytic Hydroamination of Alkynes and Allenes with Ammonia. Angewandte Chemie International Edition, 47(28), 5224-5228. doi:10.1002/anie.200801136 | es_ES |
dc.description.references | Leyva, A., & Corma, A. (2009). Reusable Gold(I) Catalysts with Unique Regioselectivity for Intermolecular Hydroamination of Alkynes. Advanced Synthesis & Catalysis, 351(17), 2876-2886. doi:10.1002/adsc.200900491 | es_ES |
dc.description.references | Liu, X.-Y., Guo, Z., Dong, S. S., Li, X.-H., & Che, C.-M. (2011). Highly Efficient and Diastereoselective Gold(I)-Catalyzed Synthesis of Tertiary Amines from Secondary Amines and Alkynes: Substrate Scope and Mechanistic Insights. Chemistry - A European Journal, 17(46), 12932-12945. doi:10.1002/chem.201101982 | es_ES |
dc.description.references | Katari, M., Rao, M. N., Rajaraman, G., & Ghosh, P. (2012). Computational Insight into a Gold(I) N-Heterocyclic Carbene Mediated Alkyne Hydroamination Reaction. Inorganic Chemistry, 51(10), 5593-5604. doi:10.1021/ic2024605 | es_ES |
dc.description.references | Ito, H., Harada, T., Ohmiya, H., & Sawamura, M. (2011). Intramolecular hydroamination of alkynic sulfonamides catalyzed by a gold–triethynylphosphine complex: Construction of azepine frameworks by 7-exo-dig cyclization. Beilstein Journal of Organic Chemistry, 7, 951-959. doi:10.3762/bjoc.7.106 | es_ES |
dc.description.references | Nieto-Oberhuber, C., López, S., & Echavarren, A. M. (2005). Intramolecular [4 + 2] Cycloadditions of 1,3-Enynes or Arylalkynes with Alkenes with Highly Reactive Cationic Phosphine Au(I) Complexes. Journal of the American Chemical Society, 127(17), 6178-6179. doi:10.1021/ja042257t | es_ES |
dc.description.references | Buzas, A. K., Istrate, F. M., & Gagosz, F. (2007). Gold(I)-Catalyzed Isomerization of Allenyl Carbinol Esters: An Efficient Access to Functionalized 1,3-Butadien-2-ol Esters. Organic Letters, 9(6), 985-988. doi:10.1021/ol063031t | es_ES |
dc.description.references | Schmidbaur, H. (1990). The fascinating implications of new results in gold chemistry. Gold Bulletin, 23(1), 11-21. doi:10.1007/bf03214710 | es_ES |
dc.description.references | Mézailles, N., Ricard, L., & Gagosz, F. (2005). Phosphine Gold(I) Bis-(trifluoromethanesulfonyl)imidate Complexes as New Highly Efficient and Air-Stable Catalysts for the Cycloisomerization of Enynes. Organic Letters, 7(19), 4133-4136. doi:10.1021/ol0515917 | es_ES |
dc.description.references | Bruce, M., & Duffy, D. (1986). Chemistry of the Group-1B Metals. XIX. Crystal and Molecular-Structures of (2-Phenylethynyl)(Triphenylphosphine)Gold(I), Au(C=CPh)(PPh3). Australian Journal of Chemistry, 39(10), 1697. doi:10.1071/ch9861697 | es_ES |
dc.description.references | Emeljanenko, D., Kaifer, E., & Himmel, H.-J. (2011). Guanidino-Functionalised Aromatic Electron Donors at Work: Competing Hydrogen- and Electron-Transfer Reactions in the Course of the Synthesis of Gold Acetylide Complexes. European Journal of Inorganic Chemistry, 2011(19), 2975-2983. doi:10.1002/ejic.201100160 | es_ES |
dc.description.references | HUTCHINGS, G. (1985). Vapor phase hydrochlorination of acetylene: Correlation of catalytic activity of supported metal chloride catalysts. Journal of Catalysis, 96(1), 292-295. doi:10.1016/0021-9517(85)90383-5 | es_ES |
dc.description.references | Oliver-Meseguer, J., Cabrero-Antonino, J. R., Dominguez, I., Leyva-Perez, A., & Corma, A. (2012). Small Gold Clusters Formed in Solution Give Reaction Turnover Numbers of 107 at Room Temperature. Science, 338(6113), 1452-1455. doi:10.1126/science.1227813 | es_ES |
dc.description.references | Hashmi, A. S. K. (2012). Sub-Nanosized Gold Catalysts. Science, 338(6113), 1434-1434. doi:10.1126/science.1231901 | es_ES |
dc.description.references | Haruta, M., Kobayashi, T., Sano, H., & Yamada, N. (1987). Novel Gold Catalysts for the Oxidation of Carbon Monoxide at a Temperature far Below 0 °C. Chemistry Letters, 16(2), 405-408. doi:10.1246/cl.1987.405 | es_ES |
dc.description.references | Herzing, A. A., Kiely, C. J., Carley, A. F., Landon, P., & Hutchings, G. J. (2008). Identification of Active Gold Nanoclusters on Iron Oxide Supports for CO Oxidation. Science, 321(5894), 1331-1335. doi:10.1126/science.1159639 | es_ES |
dc.description.references | Eustis, S., & El-Sayed, M. A. (2006). Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev., 35(3), 209-217. doi:10.1039/b514191e | es_ES |
dc.description.references | Khin, C., Hashmi, A. S. K., & Rominger, F. (2010). Gold(I) Complexes of P,N Ligands and Their Catalytic Activity. European Journal of Inorganic Chemistry, 2010(7), 1063-1069. doi:10.1002/ejic.200900964 | es_ES |