- -

Air-Stable, Dinuclear and Tetranuclear sigma,pi-Acetylide Gold(I) Complexes and Their Catalytic Implications

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Air-Stable, Dinuclear and Tetranuclear sigma,pi-Acetylide Gold(I) Complexes and Their Catalytic Implications

Show simple item record

Files in this item

dc.contributor.author Grirrane, Abdessamad es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.contributor.author Alvarez González, Eleuterio es_ES
dc.date.accessioned 2020-04-06T08:55:34Z
dc.date.available 2020-04-06T08:55:34Z
dc.date.issued 2013 es_ES
dc.identifier.issn 0947-6539 es_ES
dc.identifier.uri http://hdl.handle.net/10251/140182
dc.description.abstract [EN] Two for one gold: Factors governing the formation of isolable digold(I) ó,ð-acetylide complexes are given (see scheme), indicating the general tendency of phosphine AuI precatalysts to form this type of complexes, which are involved as reaction intermediates in gold(I)-catalyzed reactions. Mechanistic insights into the intermolecular hydroamination of aniline and terminal alkynes catalyzed by gold(I) have shown the role of a fluxional, cationic ó,ð-digold alkynide complex as one of the intermediates in the formation of imines. es_ES
dc.description.sponsorship Financial support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa and CTQ2012-36351) and Generalidad Valenciana (Prometeo 2012/014) is gratefully acknowledged es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation info:eu-repo/grantAgreement/MINECO//CTQ2012-32315/ES/REDUCCION FOTOCATALITICA DEL DIOXIDO DE CARBONO/ es_ES
dc.relation.ispartof Chemistry - A European Journal es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Gold es_ES
dc.subject Gold complexes es_ES
dc.subject Gold nanoparticles es_ES
dc.subject Homogeneous catalysis es_ES
dc.subject Hydroamination reactions es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Air-Stable, Dinuclear and Tetranuclear sigma,pi-Acetylide Gold(I) Complexes and Their Catalytic Implications es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/chem.201301623 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2012%2F014/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Grirrane, A.; García Gómez, H.; Corma Canós, A.; Alvarez González, E. (2013). Air-Stable, Dinuclear and Tetranuclear sigma,pi-Acetylide Gold(I) Complexes and Their Catalytic Implications. Chemistry - A European Journal. 19(37):12239-12244. https://doi.org/10.1002/chem.201301623 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/chem.201301623 es_ES
dc.description.upvformatpinicio 12239 es_ES
dc.description.upvformatpfin 12244 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 19 es_ES
dc.description.issue 37 es_ES
dc.relation.pasarela S\256264 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Hashmi, A. S. K., & Hutchings, G. J. (2006). Gold-Katalyse. Angewandte Chemie, 118(47), 8064-8105. doi:10.1002/ange.200602454 es_ES
dc.description.references Hashmi, A. S. K., & Hutchings, G. J. (2006). Gold Catalysis. Angewandte Chemie International Edition, 45(47), 7896-7936. doi:10.1002/anie.200602454 es_ES
dc.description.references Corma, A., Leyva-Pérez, A., & Sabater, M. J. (2011). Gold-Catalyzed Carbon−Heteroatom Bond-Forming Reactions. Chemical Reviews, 111(3), 1657-1712. doi:10.1021/cr100414u es_ES
dc.description.references Gorin, D. J., Sherry, B. D., & Toste, F. D. (2008). Ligand Effects in Homogeneous Au Catalysis. Chemical Reviews, 108(8), 3351-3378. doi:10.1021/cr068430g es_ES
dc.description.references Arcadi, A. (2008). Alternative Synthetic Methods through New Developments in Catalysis by Gold. Chemical Reviews, 108(8), 3266-3325. doi:10.1021/cr068435d es_ES
dc.description.references Li, Z., Brouwer, C., & He, C. (2008). Gold-Catalyzed Organic Transformations. Chemical Reviews, 108(8), 3239-3265. doi:10.1021/cr068434l es_ES
dc.description.references Jiménez-Núñez, E., & Echavarren, A. M. (2008). Gold-Catalyzed Cycloisomerizations of Enynes: A Mechanistic Perspective. Chemical Reviews, 108(8), 3326-3350. doi:10.1021/cr0684319 es_ES
dc.description.references López-Carrillo, V., & Echavarren, A. M. (2010). Gold(I)-Catalyzed Intermolecular [2+2] Cycloaddition of Alkynes with Alkenes. Journal of the American Chemical Society, 132(27), 9292-9294. doi:10.1021/ja104177w es_ES
dc.description.references Hashmi, A. S. K., Wieteck, M., Braun, I., Rudolph, M., & Rominger, F. (2012). Vinylidengoldverbindungen: intermolekulare C(sp3)-H-Insertionen und Cyclopropanierungspfade. Angewandte Chemie, 124(42), 10785-10789. doi:10.1002/ange.201204015 es_ES
dc.description.references Hashmi, A. S. K., Wieteck, M., Braun, I., Rudolph, M., & Rominger, F. (2012). Gold Vinylidene Complexes: Intermolecular C(sp3)H Insertions and Cyclopropanations Pathways. Angewandte Chemie International Edition, 51(42), 10633-10637. doi:10.1002/anie.201204015 es_ES
dc.description.references Cheong, P. H.-Y., Morganelli, P., Luzung, M. R., Houk, K. N., & Toste, F. D. (2008). Gold-Catalyzed Cycloisomerization of 1,5-Allenynes via Dual Activation of an Ene Reaction. Journal of the American Chemical Society, 130(13), 4517-4526. doi:10.1021/ja711058f es_ES
dc.description.references Hooper, T. N., Green, M., & Russell, C. A. (2010). Cationic Au(i) alkyne complexes: synthesis, structure and reactivity. Chemical Communications, 46(13), 2313. doi:10.1039/b923900f es_ES
dc.description.references Mingos, D. M. P., Yau, J., Menzer, S., & Williams, D. J. (1995). Ein Gold(I)-[2]Catenan. Angewandte Chemie, 107(17), 2045-2047. doi:10.1002/ange.19951071730 es_ES
dc.description.references Mingos, D. M. P., Yau, J., Menzer, S., & Williams, D. J. (1995). A Gold(I)[2]Catene. Angewandte Chemie International Edition in English, 34(17), 1894-1895. doi:10.1002/anie.199518941 es_ES
dc.description.references Yip, S.-K., Cheng, E. C.-C., Yuan, L.-H., Zhu, N., & Yam, V. W.-W. (2004). Supramolecular Assembly of Luminescent Gold(I) Alkynylcalix[4]crown-6 Complexes with Planarη2,η2-Coordinated Gold(I) Centers. Angewandte Chemie, 116(37), 5062-5065. doi:10.1002/ange.200460744 es_ES
dc.description.references Yip, S.-K., Cheng, E. C.-C., Yuan, L.-H., Zhu, N., & Yam, V. W.-W. (2004). Supramolecular Assembly of Luminescent Gold(I) Alkynylcalix[4]crown-6 Complexes with Planarη2,η2-Coordinated Gold(I) Centers. Angewandte Chemie International Edition, 43(37), 4954-4957. doi:10.1002/anie.200460744 es_ES
dc.description.references Chui, S. S. Y., Ng, M. F. Y., & Che, C.-M. (2005). Structure Determination of Homoleptic AuI, AgI, and CuI Aryl/Alkylethynyl Coordination Polymers by X-ray Powder Diffraction. Chemistry - A European Journal, 11(6), 1739-1749. doi:10.1002/chem.200400881 es_ES
dc.description.references Bruce, M. I., Jevric, M., Skelton, B. W., White, A. H., & Zaitseva, N. N. (2010). Phosphine-gold(I) derivatives of 1,1′-bis(alkynyl)metallocenes: Molecular structures of Fc’(CCX)2 [X = Au(PPh3), SiMe3] and Au4{(CC)2Fc’}2(PPh3)2 [Fc’ = Fe(η-C5H4-)2]. Journal of Organometallic Chemistry, 695(15-16), 1906-1910. doi:10.1016/j.jorganchem.2010.04.026 es_ES
dc.description.references Himmelspach, A., Finze, M., & Raub, S. (2011). Tetraedrische Gold(I)-Cluster mit Carba-closo-dodecaboranylethinido-Liganden: [{12-(R3PAu)2CC-closo-1-CB11H11}2]. Angewandte Chemie, 123(11), 2676-2679. doi:10.1002/ange.201007239 es_ES
dc.description.references Himmelspach, A., Finze, M., & Raub, S. (2011). Tetrahedral Gold(I) Clusters with Carba-closo-dodecaboranylethynido Ligands: [{12-(R3PAu)2CC-closo-1-CB11H11}2]. Angewandte Chemie International Edition, 50(11), 2628-2631. doi:10.1002/anie.201007239 es_ES
dc.description.references Koshevoy, I. O., Lin, C.-L., Karttunen, A. J., Haukka, M., Shih, C.-W., Chou, P.-T., … Pakkanen, T. A. (2011). Octanuclear gold(i) alkynyl-diphosphine clusters showing thermochromic luminescence. Chemical Communications, 47(19), 5533. doi:10.1039/c1cc11352f es_ES
dc.description.references Weber, D., Tarselli, M. A., & Gagné, M. R. (2009). Mechanistic Surprises in the Gold(I)-Catalyzed Intramolecular Hydroarylation of Allenes. Angewandte Chemie, 121(31), 5843-5846. doi:10.1002/ange.200902049 es_ES
dc.description.references Weber, D., Tarselli, M. A., & Gagné, M. R. (2009). Mechanistic Surprises in the Gold(I)-Catalyzed Intramolecular Hydroarylation of Allenes. Angewandte Chemie International Edition, 48(31), 5733-5736. doi:10.1002/anie.200902049 es_ES
dc.description.references Hashmi, A. S. K., Braun, I., Nösel, P., Schädlich, J., Wieteck, M., Rudolph, M., & Rominger, F. (2012). Eine einfache Gold-katalysierte Synthese von Benzofulvenen -gem-diaurierte Spezies als «Instant-Dual-Activation»-Präkatalysatoren. Angewandte Chemie, 124(18), 4532-4536. doi:10.1002/ange.201109183 es_ES
dc.description.references Hashmi, A. S. K., Braun, I., Nösel, P., Schädlich, J., Wieteck, M., Rudolph, M., & Rominger, F. (2012). Simple Gold-Catalyzed Synthesis of Benzofulvenes-gem-Diaurated Species as «Instant Dual-Activation» Precatalysts. Angewandte Chemie International Edition, 51(18), 4456-4460. doi:10.1002/anie.201109183 es_ES
dc.description.references Hansmann, M. M., Rudolph, M., Rominger, F., & Hashmi, A. S. K. (2013). Mechanistisches Umschalten bei der dualen Goldkatalyse von Diinen: C(sp3)-H-Aktivierung über Bifurkation - Vinyliden- versus Carbenreaktionswege. Angewandte Chemie, 125(9), 2653-2659. doi:10.1002/ange.201208777 es_ES
dc.description.references Hansmann, M. M., Rudolph, M., Rominger, F., & Hashmi, A. S. K. (2013). Mechanistic Switch in Dual Gold Catalysis of Diynes: C(sp3)-H Activation through Bifurcation-Vinylidene versus Carbene Pathways. Angewandte Chemie International Edition, 52(9), 2593-2598. doi:10.1002/anie.201208777 es_ES
dc.description.references Hashmi, A. S. K., Braun, I., Rudolph, M., & Rominger, F. (2012). The Role of Gold Acetylides as a Selectivity Trigger and the Importance of gem-Diaurated Species in the Gold-Catalyzed Hydroarylating-Aromatization of Arene-Diynes. Organometallics, 31(2), 644-661. doi:10.1021/om200946m es_ES
dc.description.references Hansmann, M. M., Rominger, F., & Hashmi, A. S. K. (2013). Gold–allenylidenes – an experimental and theoretical study. Chemical Science, 4(4), 1552. doi:10.1039/c3sc22227f es_ES
dc.description.references Grirrane, A., Garcia, H., Corma, A., & Álvarez, E. (2011). Intermolecular [2 + 2] Cycloaddition of Alkyne-Alkene Catalyzed by Au(I) Complexes. What Are the Catalytic Sites Involved? ACS Catalysis, 1(12), 1647-1653. doi:10.1021/cs2004278 es_ES
dc.description.references Brown, T. J., & Widenhoefer, R. A. (2011). Cationic Gold(I) π-Complexes of Terminal Alkynes and Their Conversion to Dinuclear σ,π-Acetylide Complexes. Organometallics, 30(21), 6003-6009. doi:10.1021/om200840g es_ES
dc.description.references Gómez-Suárez, A., & Nolan, S. P. (2012). Katalyse mit zweikernigen Goldkomplexen: Sind zwei Goldzentren besser als eines? Angewandte Chemie, 124(33), 8278-8281. doi:10.1002/ange.201203587 es_ES
dc.description.references Gómez-Suárez, A., & Nolan, S. P. (2012). Dinuclear Gold Catalysis: Are Two Gold Centers Better than One? Angewandte Chemie International Edition, 51(33), 8156-8159. doi:10.1002/anie.201203587 es_ES
dc.description.references Müller, T. E., Hultzsch, K. C., Yus, M., Foubelo, F., & Tada, M. (2008). Hydroamination: Direct Addition of Amines to Alkenes and Alkynes. Chemical Reviews, 108(9), 3795-3892. doi:10.1021/cr0306788 es_ES
dc.description.references Beller, M., Seayad, J., Tillack, A., & Jiao, H. (2004). Katalytische Markownikow- und Anti-Markownikow-Funktionalisierung von Alkenen und Alkinen. Angewandte Chemie, 116(26), 3448-3479. doi:10.1002/ange.200300616 es_ES
dc.description.references Beller, M., Seayad, J., Tillack, A., & Jiao, H. (2004). Catalytic Markovnikov and anti-Markovnikov Functionalization of Alkenes and Alkynes: Recent Developments and Trends. Angewandte Chemie International Edition, 43(26), 3368-3398. doi:10.1002/anie.200300616 es_ES
dc.description.references Alonso, F., Beletskaya, I. P., & Yus, M. (2004). Transition-Metal-Catalyzed Addition of Heteroatom−Hydrogen Bonds to Alkynes. Chemical Reviews, 104(6), 3079-3160. doi:10.1021/cr0201068 es_ES
dc.description.references Pohlki, F., & Doye, S. (2003). The catalytic hydroamination of alkynes. Chemical Society Reviews, 32(2), 104-114. doi:10.1039/b200386b es_ES
dc.description.references Kanemitsu, T., Umehara, A., Haneji, R., Nagata, K., & Itoh, T. (2012). A simple proline-based organocatalyst for the enantioselective reduction of imines using trichlorosilane as a reductant. Tetrahedron, 68(20), 3893-3898. doi:10.1016/j.tet.2012.03.035 es_ES
dc.description.references Haak, E., Bytschkov, I., & Doye, S. (1999). Intermolekulare, durch Dimethyltitanocen katalysierte Hydroaminierung von Alkinen. Angewandte Chemie, 111(22), 3584-3586. doi:10.1002/(sici)1521-3757(19991115)111:22<3584::aid-ange3584>3.0.co;2-o es_ES
dc.description.references Haak, E., Bytschkov, I., & Doye, S. (1999). Intermolecular Hydroamination of Alkynes Catalyzed by Dimethyltitanocene. Angewandte Chemie International Edition, 38(22), 3389-3391. doi:10.1002/(sici)1521-3773(19991115)38:22<3389::aid-anie3389>3.0.co;2-e es_ES
dc.description.references Tillack, A., Khedkar, V., Jiao, H., & Beller, M. (2005). A General Study of Aryloxo and Alkoxo Ligands in the Titanium-Catalyzed Intermolecular Hydroamination of Terminal Alkynes. European Journal of Organic Chemistry, 2005(23), 5001-5012. doi:10.1002/ejoc.200500423 es_ES
dc.description.references Li, Y., & Marks, T. J. (1996). Organolanthanide-Catalyzed Intramolecular Hydroamination/Cyclization of Aminoalkynes. Journal of the American Chemical Society, 118(39), 9295-9306. doi:10.1021/ja9612413 es_ES
dc.description.references Baranger, A. M., Walsh, P. J., & Bergman, R. G. (1993). Variable regiochemistry in the stoichiometric and catalytic hydroamination of alkynes by imidozirconium complexes caused by an unusual dependence of the rate law on alkyne structure and temperature. Journal of the American Chemical Society, 115(7), 2753-2763. doi:10.1021/ja00060a025 es_ES
dc.description.references Tokunaga, M., Eckert, M., & Wakatsuki, Y. (1999). Rutheniumkatalysierte intermolekulare Hydroaminierung terminaler Alkine mit Anilinen: eine praktikable Synthese von aromatischen Ketiminen. Angewandte Chemie, 111(21), 3416-3419. doi:10.1002/(sici)1521-3757(19991102)111:21<3416::aid-ange3416>3.0.co;2-6 es_ES
dc.description.references Tokunaga, M., Eckert, M., & Wakatsuki, Y. (1999). Ruthenium-Catalyzed Intermolecular Hydroamination of Terminal Alkynes with Anilines: A Practical Synthesis of Aromatic Ketimines. Angewandte Chemie International Edition, 38(21), 3222-3225. doi:10.1002/(sici)1521-3773(19991102)38:21<3222::aid-anie3222>3.0.co;2-7 es_ES
dc.description.references Shimada, T., & Yamamoto, Y. (2002). Palladium-Catalyzed Intermolecular Hydroamination of Alkynes:  A Dramatic Rate-Enhancement Effect ofo-Aminophenol. Journal of the American Chemical Society, 124(43), 12670-12671. doi:10.1021/ja027683y es_ES
dc.description.references Barluenga, J., Aznar, F., Liz, R., & Rodes, R. (1980). Catalytic and non-catalytic addition of aromatic amines to terminal acetylenes in the presence of mercury(II) chloride and acetate. Journal of the Chemical Society, Perkin Transactions 1, 2732. doi:10.1039/p19800002732 es_ES
dc.description.references Alonso-Moreno, C., Carrillo-Hermosilla, F., Romero-Fernández, J., Rodríguez, A. M., Otero, A., & Antiñolo, A. (2009). Well-Defined Regioselective Iminopyridine Rhodium Catalysts for Anti-Markovnikov Addition of Aromatic Primary Amines to 1-Octyne. Advanced Synthesis & Catalysis, 351(6), 881-890. doi:10.1002/adsc.200800786 es_ES
dc.description.references Skouta, R., & Li, C.-J. (2008). Gold-catalyzed reactions of C–H bonds. Tetrahedron, 64(22), 4917-4938. doi:10.1016/j.tet.2008.03.083 es_ES
dc.description.references Lavallo, V., Frey, G. D., Donnadieu, B., Soleilhavoup, M., & Bertrand, G. (2008). Homogeneous Catalytic Hydroamination of Alkynes and Allenes with Ammonia. Angewandte Chemie, 120(28), 5302-5306. doi:10.1002/ange.200801136 es_ES
dc.description.references Lavallo, V., Frey, G. D., Donnadieu, B., Soleilhavoup, M., & Bertrand, G. (2008). Homogeneous Catalytic Hydroamination of Alkynes and Allenes with Ammonia. Angewandte Chemie International Edition, 47(28), 5224-5228. doi:10.1002/anie.200801136 es_ES
dc.description.references Leyva, A., & Corma, A. (2009). Reusable Gold(I) Catalysts with Unique Regioselectivity for Intermolecular Hydroamination of Alkynes. Advanced Synthesis & Catalysis, 351(17), 2876-2886. doi:10.1002/adsc.200900491 es_ES
dc.description.references Liu, X.-Y., Guo, Z., Dong, S. S., Li, X.-H., & Che, C.-M. (2011). Highly Efficient and Diastereoselective Gold(I)-Catalyzed Synthesis of Tertiary Amines from Secondary Amines and Alkynes: Substrate Scope and Mechanistic Insights. Chemistry - A European Journal, 17(46), 12932-12945. doi:10.1002/chem.201101982 es_ES
dc.description.references Katari, M., Rao, M. N., Rajaraman, G., & Ghosh, P. (2012). Computational Insight into a Gold(I) N-Heterocyclic Carbene Mediated Alkyne Hydroamination Reaction. Inorganic Chemistry, 51(10), 5593-5604. doi:10.1021/ic2024605 es_ES
dc.description.references Ito, H., Harada, T., Ohmiya, H., & Sawamura, M. (2011). Intramolecular hydroamination of alkynic sulfonamides catalyzed by a gold–triethynylphosphine complex: Construction of azepine frameworks by 7-exo-dig cyclization. Beilstein Journal of Organic Chemistry, 7, 951-959. doi:10.3762/bjoc.7.106 es_ES
dc.description.references Nieto-Oberhuber, C., López, S., & Echavarren, A. M. (2005). Intramolecular [4 + 2] Cycloadditions of 1,3-Enynes or Arylalkynes with Alkenes with Highly Reactive Cationic Phosphine Au(I) Complexes. Journal of the American Chemical Society, 127(17), 6178-6179. doi:10.1021/ja042257t es_ES
dc.description.references Buzas, A. K., Istrate, F. M., & Gagosz, F. (2007). Gold(I)-Catalyzed Isomerization of Allenyl Carbinol Esters:  An Efficient Access to Functionalized 1,3-Butadien-2-ol Esters. Organic Letters, 9(6), 985-988. doi:10.1021/ol063031t es_ES
dc.description.references Schmidbaur, H. (1990). The fascinating implications of new results in gold chemistry. Gold Bulletin, 23(1), 11-21. doi:10.1007/bf03214710 es_ES
dc.description.references Mézailles, N., Ricard, L., & Gagosz, F. (2005). Phosphine Gold(I) Bis-(trifluoromethanesulfonyl)imidate Complexes as New Highly Efficient and Air-Stable Catalysts for the Cycloisomerization of Enynes. Organic Letters, 7(19), 4133-4136. doi:10.1021/ol0515917 es_ES
dc.description.references Bruce, M., & Duffy, D. (1986). Chemistry of the Group-1B Metals. XIX. Crystal and Molecular-Structures of (2-Phenylethynyl)(Triphenylphosphine)Gold(I), Au(C=CPh)(PPh3). Australian Journal of Chemistry, 39(10), 1697. doi:10.1071/ch9861697 es_ES
dc.description.references Emeljanenko, D., Kaifer, E., & Himmel, H.-J. (2011). Guanidino-Functionalised Aromatic Electron Donors at Work: Competing Hydrogen- and Electron-Transfer Reactions in the Course of the Synthesis of Gold Acetylide Complexes. European Journal of Inorganic Chemistry, 2011(19), 2975-2983. doi:10.1002/ejic.201100160 es_ES
dc.description.references HUTCHINGS, G. (1985). Vapor phase hydrochlorination of acetylene: Correlation of catalytic activity of supported metal chloride catalysts. Journal of Catalysis, 96(1), 292-295. doi:10.1016/0021-9517(85)90383-5 es_ES
dc.description.references Oliver-Meseguer, J., Cabrero-Antonino, J. R., Dominguez, I., Leyva-Perez, A., & Corma, A. (2012). Small Gold Clusters Formed in Solution Give Reaction Turnover Numbers of 107 at Room Temperature. Science, 338(6113), 1452-1455. doi:10.1126/science.1227813 es_ES
dc.description.references Hashmi, A. S. K. (2012). Sub-Nanosized Gold Catalysts. Science, 338(6113), 1434-1434. doi:10.1126/science.1231901 es_ES
dc.description.references Haruta, M., Kobayashi, T., Sano, H., & Yamada, N. (1987). Novel Gold Catalysts for the Oxidation of Carbon Monoxide at a Temperature far Below 0 °C. Chemistry Letters, 16(2), 405-408. doi:10.1246/cl.1987.405 es_ES
dc.description.references Herzing, A. A., Kiely, C. J., Carley, A. F., Landon, P., & Hutchings, G. J. (2008). Identification of Active Gold Nanoclusters on Iron Oxide Supports for CO Oxidation. Science, 321(5894), 1331-1335. doi:10.1126/science.1159639 es_ES
dc.description.references Eustis, S., & El-Sayed, M. A. (2006). Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev., 35(3), 209-217. doi:10.1039/b514191e es_ES
dc.description.references Khin, C., Hashmi, A. S. K., & Rominger, F. (2010). Gold(I) Complexes of P,N Ligands and Their Catalytic Activity. European Journal of Inorganic Chemistry, 2010(7), 1063-1069. doi:10.1002/ejic.200900964 es_ES


This item appears in the following Collection(s)

Show simple item record