Hashmi, A. S. K., & Hutchings, G. J. (2006). Gold-Katalyse. Angewandte Chemie, 118(47), 8064-8105. doi:10.1002/ange.200602454
Hashmi, A. S. K., & Hutchings, G. J. (2006). Gold Catalysis. Angewandte Chemie International Edition, 45(47), 7896-7936. doi:10.1002/anie.200602454
Corma, A., Leyva-Pérez, A., & Sabater, M. J. (2011). Gold-Catalyzed Carbon−Heteroatom Bond-Forming Reactions. Chemical Reviews, 111(3), 1657-1712. doi:10.1021/cr100414u
[+]
Hashmi, A. S. K., & Hutchings, G. J. (2006). Gold-Katalyse. Angewandte Chemie, 118(47), 8064-8105. doi:10.1002/ange.200602454
Hashmi, A. S. K., & Hutchings, G. J. (2006). Gold Catalysis. Angewandte Chemie International Edition, 45(47), 7896-7936. doi:10.1002/anie.200602454
Corma, A., Leyva-Pérez, A., & Sabater, M. J. (2011). Gold-Catalyzed Carbon−Heteroatom Bond-Forming Reactions. Chemical Reviews, 111(3), 1657-1712. doi:10.1021/cr100414u
Gorin, D. J., Sherry, B. D., & Toste, F. D. (2008). Ligand Effects in Homogeneous Au Catalysis. Chemical Reviews, 108(8), 3351-3378. doi:10.1021/cr068430g
Arcadi, A. (2008). Alternative Synthetic Methods through New Developments in Catalysis by Gold. Chemical Reviews, 108(8), 3266-3325. doi:10.1021/cr068435d
Li, Z., Brouwer, C., & He, C. (2008). Gold-Catalyzed Organic Transformations. Chemical Reviews, 108(8), 3239-3265. doi:10.1021/cr068434l
Jiménez-Núñez, E., & Echavarren, A. M. (2008). Gold-Catalyzed Cycloisomerizations of Enynes: A Mechanistic Perspective. Chemical Reviews, 108(8), 3326-3350. doi:10.1021/cr0684319
López-Carrillo, V., & Echavarren, A. M. (2010). Gold(I)-Catalyzed Intermolecular [2+2] Cycloaddition of Alkynes with Alkenes. Journal of the American Chemical Society, 132(27), 9292-9294. doi:10.1021/ja104177w
Hashmi, A. S. K., Wieteck, M., Braun, I., Rudolph, M., & Rominger, F. (2012). Vinylidengoldverbindungen: intermolekulare C(sp3)-H-Insertionen und Cyclopropanierungspfade. Angewandte Chemie, 124(42), 10785-10789. doi:10.1002/ange.201204015
Hashmi, A. S. K., Wieteck, M., Braun, I., Rudolph, M., & Rominger, F. (2012). Gold Vinylidene Complexes: Intermolecular C(sp3)H Insertions and Cyclopropanations Pathways. Angewandte Chemie International Edition, 51(42), 10633-10637. doi:10.1002/anie.201204015
Cheong, P. H.-Y., Morganelli, P., Luzung, M. R., Houk, K. N., & Toste, F. D. (2008). Gold-Catalyzed Cycloisomerization of 1,5-Allenynes via Dual Activation of an Ene Reaction. Journal of the American Chemical Society, 130(13), 4517-4526. doi:10.1021/ja711058f
Hooper, T. N., Green, M., & Russell, C. A. (2010). Cationic Au(i) alkyne complexes: synthesis, structure and reactivity. Chemical Communications, 46(13), 2313. doi:10.1039/b923900f
Mingos, D. M. P., Yau, J., Menzer, S., & Williams, D. J. (1995). Ein Gold(I)-[2]Catenan. Angewandte Chemie, 107(17), 2045-2047. doi:10.1002/ange.19951071730
Mingos, D. M. P., Yau, J., Menzer, S., & Williams, D. J. (1995). A Gold(I)[2]Catene. Angewandte Chemie International Edition in English, 34(17), 1894-1895. doi:10.1002/anie.199518941
Yip, S.-K., Cheng, E. C.-C., Yuan, L.-H., Zhu, N., & Yam, V. W.-W. (2004). Supramolecular Assembly of Luminescent Gold(I) Alkynylcalix[4]crown-6 Complexes with Planarη2,η2-Coordinated Gold(I) Centers. Angewandte Chemie, 116(37), 5062-5065. doi:10.1002/ange.200460744
Yip, S.-K., Cheng, E. C.-C., Yuan, L.-H., Zhu, N., & Yam, V. W.-W. (2004). Supramolecular Assembly of Luminescent Gold(I) Alkynylcalix[4]crown-6 Complexes with Planarη2,η2-Coordinated Gold(I) Centers. Angewandte Chemie International Edition, 43(37), 4954-4957. doi:10.1002/anie.200460744
Chui, S. S. Y., Ng, M. F. Y., & Che, C.-M. (2005). Structure Determination of Homoleptic AuI, AgI, and CuI Aryl/Alkylethynyl Coordination Polymers by X-ray Powder Diffraction. Chemistry - A European Journal, 11(6), 1739-1749. doi:10.1002/chem.200400881
Bruce, M. I., Jevric, M., Skelton, B. W., White, A. H., & Zaitseva, N. N. (2010). Phosphine-gold(I) derivatives of 1,1′-bis(alkynyl)metallocenes: Molecular structures of Fc’(CCX)2 [X = Au(PPh3), SiMe3] and Au4{(CC)2Fc’}2(PPh3)2 [Fc’ = Fe(η-C5H4-)2]. Journal of Organometallic Chemistry, 695(15-16), 1906-1910. doi:10.1016/j.jorganchem.2010.04.026
Himmelspach, A., Finze, M., & Raub, S. (2011). Tetraedrische Gold(I)-Cluster mit Carba-closo-dodecaboranylethinido-Liganden: [{12-(R3PAu)2CC-closo-1-CB11H11}2]. Angewandte Chemie, 123(11), 2676-2679. doi:10.1002/ange.201007239
Himmelspach, A., Finze, M., & Raub, S. (2011). Tetrahedral Gold(I) Clusters with Carba-closo-dodecaboranylethynido Ligands: [{12-(R3PAu)2CC-closo-1-CB11H11}2]. Angewandte Chemie International Edition, 50(11), 2628-2631. doi:10.1002/anie.201007239
Koshevoy, I. O., Lin, C.-L., Karttunen, A. J., Haukka, M., Shih, C.-W., Chou, P.-T., … Pakkanen, T. A. (2011). Octanuclear gold(i) alkynyl-diphosphine clusters showing thermochromic luminescence. Chemical Communications, 47(19), 5533. doi:10.1039/c1cc11352f
Weber, D., Tarselli, M. A., & Gagné, M. R. (2009). Mechanistic Surprises in the Gold(I)-Catalyzed Intramolecular Hydroarylation of Allenes. Angewandte Chemie, 121(31), 5843-5846. doi:10.1002/ange.200902049
Weber, D., Tarselli, M. A., & Gagné, M. R. (2009). Mechanistic Surprises in the Gold(I)-Catalyzed Intramolecular Hydroarylation of Allenes. Angewandte Chemie International Edition, 48(31), 5733-5736. doi:10.1002/anie.200902049
Hashmi, A. S. K., Braun, I., Nösel, P., Schädlich, J., Wieteck, M., Rudolph, M., & Rominger, F. (2012). Eine einfache Gold-katalysierte Synthese von Benzofulvenen -gem-diaurierte Spezies als «Instant-Dual-Activation»-Präkatalysatoren. Angewandte Chemie, 124(18), 4532-4536. doi:10.1002/ange.201109183
Hashmi, A. S. K., Braun, I., Nösel, P., Schädlich, J., Wieteck, M., Rudolph, M., & Rominger, F. (2012). Simple Gold-Catalyzed Synthesis of Benzofulvenes-gem-Diaurated Species as «Instant Dual-Activation» Precatalysts. Angewandte Chemie International Edition, 51(18), 4456-4460. doi:10.1002/anie.201109183
Hansmann, M. M., Rudolph, M., Rominger, F., & Hashmi, A. S. K. (2013). Mechanistisches Umschalten bei der dualen Goldkatalyse von Diinen: C(sp3)-H-Aktivierung über Bifurkation - Vinyliden- versus Carbenreaktionswege. Angewandte Chemie, 125(9), 2653-2659. doi:10.1002/ange.201208777
Hansmann, M. M., Rudolph, M., Rominger, F., & Hashmi, A. S. K. (2013). Mechanistic Switch in Dual Gold Catalysis of Diynes: C(sp3)-H Activation through Bifurcation-Vinylidene versus Carbene Pathways. Angewandte Chemie International Edition, 52(9), 2593-2598. doi:10.1002/anie.201208777
Hashmi, A. S. K., Braun, I., Rudolph, M., & Rominger, F. (2012). The Role of Gold Acetylides as a Selectivity Trigger and the Importance of gem-Diaurated Species in the Gold-Catalyzed Hydroarylating-Aromatization of Arene-Diynes. Organometallics, 31(2), 644-661. doi:10.1021/om200946m
Hansmann, M. M., Rominger, F., & Hashmi, A. S. K. (2013). Gold–allenylidenes – an experimental and theoretical study. Chemical Science, 4(4), 1552. doi:10.1039/c3sc22227f
Grirrane, A., Garcia, H., Corma, A., & Álvarez, E. (2011). Intermolecular [2 + 2] Cycloaddition of Alkyne-Alkene Catalyzed by Au(I) Complexes. What Are the Catalytic Sites Involved? ACS Catalysis, 1(12), 1647-1653. doi:10.1021/cs2004278
Brown, T. J., & Widenhoefer, R. A. (2011). Cationic Gold(I) π-Complexes of Terminal Alkynes and Their Conversion to Dinuclear σ,π-Acetylide Complexes. Organometallics, 30(21), 6003-6009. doi:10.1021/om200840g
Gómez-Suárez, A., & Nolan, S. P. (2012). Katalyse mit zweikernigen Goldkomplexen: Sind zwei Goldzentren besser als eines? Angewandte Chemie, 124(33), 8278-8281. doi:10.1002/ange.201203587
Gómez-Suárez, A., & Nolan, S. P. (2012). Dinuclear Gold Catalysis: Are Two Gold Centers Better than One? Angewandte Chemie International Edition, 51(33), 8156-8159. doi:10.1002/anie.201203587
Müller, T. E., Hultzsch, K. C., Yus, M., Foubelo, F., & Tada, M. (2008). Hydroamination: Direct Addition of Amines to Alkenes and Alkynes. Chemical Reviews, 108(9), 3795-3892. doi:10.1021/cr0306788
Beller, M., Seayad, J., Tillack, A., & Jiao, H. (2004). Katalytische Markownikow- und Anti-Markownikow-Funktionalisierung von Alkenen und Alkinen. Angewandte Chemie, 116(26), 3448-3479. doi:10.1002/ange.200300616
Beller, M., Seayad, J., Tillack, A., & Jiao, H. (2004). Catalytic Markovnikov and anti-Markovnikov Functionalization of Alkenes and Alkynes: Recent Developments and Trends. Angewandte Chemie International Edition, 43(26), 3368-3398. doi:10.1002/anie.200300616
Alonso, F., Beletskaya, I. P., & Yus, M. (2004). Transition-Metal-Catalyzed Addition of Heteroatom−Hydrogen Bonds to Alkynes. Chemical Reviews, 104(6), 3079-3160. doi:10.1021/cr0201068
Pohlki, F., & Doye, S. (2003). The catalytic hydroamination of alkynes. Chemical Society Reviews, 32(2), 104-114. doi:10.1039/b200386b
Kanemitsu, T., Umehara, A., Haneji, R., Nagata, K., & Itoh, T. (2012). A simple proline-based organocatalyst for the enantioselective reduction of imines using trichlorosilane as a reductant. Tetrahedron, 68(20), 3893-3898. doi:10.1016/j.tet.2012.03.035
Haak, E., Bytschkov, I., & Doye, S. (1999). Intermolekulare, durch Dimethyltitanocen katalysierte Hydroaminierung von Alkinen. Angewandte Chemie, 111(22), 3584-3586. doi:10.1002/(sici)1521-3757(19991115)111:22<3584::aid-ange3584>3.0.co;2-o
Haak, E., Bytschkov, I., & Doye, S. (1999). Intermolecular Hydroamination of Alkynes Catalyzed by Dimethyltitanocene. Angewandte Chemie International Edition, 38(22), 3389-3391. doi:10.1002/(sici)1521-3773(19991115)38:22<3389::aid-anie3389>3.0.co;2-e
Tillack, A., Khedkar, V., Jiao, H., & Beller, M. (2005). A General Study of Aryloxo and Alkoxo Ligands in the Titanium-Catalyzed Intermolecular Hydroamination of Terminal Alkynes. European Journal of Organic Chemistry, 2005(23), 5001-5012. doi:10.1002/ejoc.200500423
Li, Y., & Marks, T. J. (1996). Organolanthanide-Catalyzed Intramolecular Hydroamination/Cyclization of Aminoalkynes. Journal of the American Chemical Society, 118(39), 9295-9306. doi:10.1021/ja9612413
Baranger, A. M., Walsh, P. J., & Bergman, R. G. (1993). Variable regiochemistry in the stoichiometric and catalytic hydroamination of alkynes by imidozirconium complexes caused by an unusual dependence of the rate law on alkyne structure and temperature. Journal of the American Chemical Society, 115(7), 2753-2763. doi:10.1021/ja00060a025
Tokunaga, M., Eckert, M., & Wakatsuki, Y. (1999). Rutheniumkatalysierte intermolekulare Hydroaminierung terminaler Alkine mit Anilinen: eine praktikable Synthese von aromatischen Ketiminen. Angewandte Chemie, 111(21), 3416-3419. doi:10.1002/(sici)1521-3757(19991102)111:21<3416::aid-ange3416>3.0.co;2-6
Tokunaga, M., Eckert, M., & Wakatsuki, Y. (1999). Ruthenium-Catalyzed Intermolecular Hydroamination of Terminal Alkynes with Anilines: A Practical Synthesis of Aromatic Ketimines. Angewandte Chemie International Edition, 38(21), 3222-3225. doi:10.1002/(sici)1521-3773(19991102)38:21<3222::aid-anie3222>3.0.co;2-7
Shimada, T., & Yamamoto, Y. (2002). Palladium-Catalyzed Intermolecular Hydroamination of Alkynes: A Dramatic Rate-Enhancement Effect ofo-Aminophenol. Journal of the American Chemical Society, 124(43), 12670-12671. doi:10.1021/ja027683y
Barluenga, J., Aznar, F., Liz, R., & Rodes, R. (1980). Catalytic and non-catalytic addition of aromatic amines to terminal acetylenes in the presence of mercury(II) chloride and acetate. Journal of the Chemical Society, Perkin Transactions 1, 2732. doi:10.1039/p19800002732
Alonso-Moreno, C., Carrillo-Hermosilla, F., Romero-Fernández, J., Rodríguez, A. M., Otero, A., & Antiñolo, A. (2009). Well-Defined Regioselective Iminopyridine Rhodium Catalysts for Anti-Markovnikov Addition of Aromatic Primary Amines to 1-Octyne. Advanced Synthesis & Catalysis, 351(6), 881-890. doi:10.1002/adsc.200800786
Skouta, R., & Li, C.-J. (2008). Gold-catalyzed reactions of C–H bonds. Tetrahedron, 64(22), 4917-4938. doi:10.1016/j.tet.2008.03.083
Lavallo, V., Frey, G. D., Donnadieu, B., Soleilhavoup, M., & Bertrand, G. (2008). Homogeneous Catalytic Hydroamination of Alkynes and Allenes with Ammonia. Angewandte Chemie, 120(28), 5302-5306. doi:10.1002/ange.200801136
Lavallo, V., Frey, G. D., Donnadieu, B., Soleilhavoup, M., & Bertrand, G. (2008). Homogeneous Catalytic Hydroamination of Alkynes and Allenes with Ammonia. Angewandte Chemie International Edition, 47(28), 5224-5228. doi:10.1002/anie.200801136
Leyva, A., & Corma, A. (2009). Reusable Gold(I) Catalysts with Unique Regioselectivity for Intermolecular Hydroamination of Alkynes. Advanced Synthesis & Catalysis, 351(17), 2876-2886. doi:10.1002/adsc.200900491
Liu, X.-Y., Guo, Z., Dong, S. S., Li, X.-H., & Che, C.-M. (2011). Highly Efficient and Diastereoselective Gold(I)-Catalyzed Synthesis of Tertiary Amines from Secondary Amines and Alkynes: Substrate Scope and Mechanistic Insights. Chemistry - A European Journal, 17(46), 12932-12945. doi:10.1002/chem.201101982
Katari, M., Rao, M. N., Rajaraman, G., & Ghosh, P. (2012). Computational Insight into a Gold(I) N-Heterocyclic Carbene Mediated Alkyne Hydroamination Reaction. Inorganic Chemistry, 51(10), 5593-5604. doi:10.1021/ic2024605
Ito, H., Harada, T., Ohmiya, H., & Sawamura, M. (2011). Intramolecular hydroamination of alkynic sulfonamides catalyzed by a gold–triethynylphosphine complex: Construction of azepine frameworks by 7-exo-dig cyclization. Beilstein Journal of Organic Chemistry, 7, 951-959. doi:10.3762/bjoc.7.106
Nieto-Oberhuber, C., López, S., & Echavarren, A. M. (2005). Intramolecular [4 + 2] Cycloadditions of 1,3-Enynes or Arylalkynes with Alkenes with Highly Reactive Cationic Phosphine Au(I) Complexes. Journal of the American Chemical Society, 127(17), 6178-6179. doi:10.1021/ja042257t
Buzas, A. K., Istrate, F. M., & Gagosz, F. (2007). Gold(I)-Catalyzed Isomerization of Allenyl Carbinol Esters: An Efficient Access to Functionalized 1,3-Butadien-2-ol Esters. Organic Letters, 9(6), 985-988. doi:10.1021/ol063031t
Schmidbaur, H. (1990). The fascinating implications of new results in gold chemistry. Gold Bulletin, 23(1), 11-21. doi:10.1007/bf03214710
Mézailles, N., Ricard, L., & Gagosz, F. (2005). Phosphine Gold(I) Bis-(trifluoromethanesulfonyl)imidate Complexes as New Highly Efficient and Air-Stable Catalysts for the Cycloisomerization of Enynes. Organic Letters, 7(19), 4133-4136. doi:10.1021/ol0515917
Bruce, M., & Duffy, D. (1986). Chemistry of the Group-1B Metals. XIX. Crystal and Molecular-Structures of (2-Phenylethynyl)(Triphenylphosphine)Gold(I), Au(C=CPh)(PPh3). Australian Journal of Chemistry, 39(10), 1697. doi:10.1071/ch9861697
Emeljanenko, D., Kaifer, E., & Himmel, H.-J. (2011). Guanidino-Functionalised Aromatic Electron Donors at Work: Competing Hydrogen- and Electron-Transfer Reactions in the Course of the Synthesis of Gold Acetylide Complexes. European Journal of Inorganic Chemistry, 2011(19), 2975-2983. doi:10.1002/ejic.201100160
HUTCHINGS, G. (1985). Vapor phase hydrochlorination of acetylene: Correlation of catalytic activity of supported metal chloride catalysts. Journal of Catalysis, 96(1), 292-295. doi:10.1016/0021-9517(85)90383-5
Oliver-Meseguer, J., Cabrero-Antonino, J. R., Dominguez, I., Leyva-Perez, A., & Corma, A. (2012). Small Gold Clusters Formed in Solution Give Reaction Turnover Numbers of 107 at Room Temperature. Science, 338(6113), 1452-1455. doi:10.1126/science.1227813
Hashmi, A. S. K. (2012). Sub-Nanosized Gold Catalysts. Science, 338(6113), 1434-1434. doi:10.1126/science.1231901
Haruta, M., Kobayashi, T., Sano, H., & Yamada, N. (1987). Novel Gold Catalysts for the Oxidation of Carbon Monoxide at a Temperature far Below 0 °C. Chemistry Letters, 16(2), 405-408. doi:10.1246/cl.1987.405
Herzing, A. A., Kiely, C. J., Carley, A. F., Landon, P., & Hutchings, G. J. (2008). Identification of Active Gold Nanoclusters on Iron Oxide Supports for CO Oxidation. Science, 321(5894), 1331-1335. doi:10.1126/science.1159639
Eustis, S., & El-Sayed, M. A. (2006). Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev., 35(3), 209-217. doi:10.1039/b514191e
Khin, C., Hashmi, A. S. K., & Rominger, F. (2010). Gold(I) Complexes of P,N Ligands and Their Catalytic Activity. European Journal of Inorganic Chemistry, 2010(7), 1063-1069. doi:10.1002/ejic.200900964
[-]